PKU-CUSTIPEN Nuclear Reaction Workshop "Reactions and Spectroscopy of Unstable Nuclei" August 10-14, 2014, Peking University, Beijing

Inclusive one-neutron knockout reaction of ^{17,18,20}C and migration of lowest-lying negative parity states in neutron-rich C isotopes

> Sato Yoshiteru Seoul National University

Motivation

- A high sensitivity of the nucleon knockout reaction processes in producing states with a hole in an orbit beneath the valence shell will provide a unique opportunity to study the evolution of valence orbits.
- We want to establish in-flight neutron decay spectroscopy followed by 1*n* knockout as a tool to probe the shell evolution and nuclear structure.

Properties of neutron-rich C isotopes

• $J_{g.s.}^{\pi}$ of ^{15,17,19}C do not follow naïve shell model. _____ Op1/2

-0d5/2

• They are, however, naturally understood in terms of prolate deformation for $\beta > 0.1$

Nucleus	$J_{ ext{g.s.}}^{\pi}$	Ground state deformation	10 Neutron one-particle levels of 18C in W-S potential 8 $-\Omega^{\pi} = 1/2^{\pm}$ $\cdots \Omega^{\pi} = 3/2^{\pm}$ $-\Omega^{\pi} = 5/2^{\pm}$ $V_{WS} = -40.0 \text{ MeV}$ R = 3.33 fm
¹⁵ C	$1/2^{+}$	Prolate	⁶ I.Hamamoto,
¹⁶ C	0+	Prolate	r = PRC85,064329
¹⁷ C	3/2+	Prolate	
¹⁸ C	0+	Prolate	
¹⁹ C	$1/2^{+}$	Prolate	
²⁰ C	0+	?	-6 -8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
			β

1n knockout reactions studied

• ${}^{1}H({}^{17}C, {}^{16}C^* \rightarrow {}^{15}C^+n)$ at 70 MeV/u Y.Satou et al., PLB728,462(2014).

In-flight neutron

decay

- ${}^{12}C({}^{18}C, {}^{17}C^* \rightarrow {}^{16}C+n)$ at 250 MeV/u s.Kim
- ${}^{12}C({}^{20}C, {}^{19}C^* \rightarrow {}^{18}C+n)$ at 280 MeV/u J.W.Hwang

Nucleon knockout reactions

- 1. Exhibit large cross sections, $10 \sim 100 \text{ mb}$ (spectroscopic factor). $\sigma_{-1n} = \sum_{nlj} \left(\frac{A}{A-1}\right)^N \cdot C^2 S(J^{\pi}, nlj) \cdot \sigma_{sp}(nlj, S_n^{\text{eff}})$
- 2. Suited for populating both bound and unbound hole-like states of the residue.
- 3. Momentum distribution carries information on the wave function of the struck nucleon (orbital angular momentum ℓ)
- Knockout of the minor nucleon species provides a good means to create more exotic nuclei, ^{25–28}0
- 5. Theoretical tools are readily available
 - B.Abu-Ibrahim, Y.Ogawa, Y.Suzuki, I.Tanihata, 2003 (CSC_GM)
 - C.A.Berturani and A.Gade, 2006 (MOMDIS)
 - T.Aumann, C.A.Bertulani, J.Ryckebusch, PRC88(2013)064610.

Momentum distributions within DWBA for (*p*,*p*N) knockout

T.Aumann, C.A.Bertulani, J.Ryckebusch, PRC88(2013)064610.

• DWIA quasifree cross section

$$\frac{d^3\sigma}{dT_N d\Omega'_p d\Omega_N} = K' \cdot \frac{d\sigma_{pN}}{d\Omega} \cdot |F(\boldsymbol{Q})|^2$$

• Longitudinal momentum distribution p_{\parallel}

$$\frac{d\sigma}{dQ_{z}} = \frac{S(lj)}{2j+1} \sum_{m} \left\langle \frac{d\sigma_{pN}}{d\Omega} \right\rangle_{Q_{z}} |C_{lm}|^{2} \int_{0}^{\infty} db \ b \left| \langle S(b) \rangle_{Q_{z}} \right|^{2}$$

$$\times \left| \int_{-\infty}^{\infty} dz e^{-iQ_{z}Z} \frac{u_{lj}(r)}{r} P_{lm}(b,z) \right|^{2} \qquad \qquad \text{Fourier transform}$$
of the single particle w.f.

β^- delayed *n* emission of N-rich nuclei

RIKEN RI Beam Factory (RIBF)

Invariant mass method

RIKEN Fragment separator RIPS

SAMURAI Day-One, 2012 May One-neutron knockout reactions of ^{18,20}C

Kim Sunji

$12C(18C, 17C^*)$ at 250 MeV/u $\Delta P_{||} < 20 \text{ MeV/c}$ $\int_{17}^{17}C \& {}^{16}C+n$

Hwang Jongwon

12C(20C, 19C*) at 280 MeV/U^{ΔP|| < 20 MeV/c} (in σ)

Migration of lowest-lying cross-shell states in C isotopic chain Data Sheet, 230 (2014) 115.

Mass number (carbon isotopes)

How the 1/2⁻energies are interpreted in terms of nuclear deformation?

- The 1/2⁻ energy measures the interval between p_{1/2} and one of sd Nilsson orbits.
- If $\beta \approx 0.4$ for both ^{18,20}C, $E_{\frac{1}{2}}({}^{19}\text{C}) = E_{\frac{1}{2}}({}^{17}\text{C}) + \Delta E$ $\Delta E \sim 1.8 \text{ MeV}$
- But, experimentally, $\Delta E \sim \text{MeV}:$ $E_1^{-}({}^{17}\text{C}) = \text{MeV},$ $E_1^{-}({}^{19}\text{C}) = \text{MeV}.$ How can we reconcile this?
- → Oblate deformation for ²⁰C at $\beta \sim -0.4$.

Model predictions

Summary

• New (deep) hole states in ^{16,17,19}C have been successfully populate by 1*n*-knockout of ^{17,18,20}C.

¹⁶ C	¹⁷ C	¹⁹ C
5.45(1) MeV, 2 [–]	MeV, 1/2 ⁻ MeV, 3/2 ⁻ cf) 2.71(2) MeV 3.93(2) MeV β <i>n</i>	MeV, 1/2 ⁻

- ¹⁶C: p_{\parallel} distribution width is a good measure of *L* (angular momentum), for knockout involving unbound residue, as well.
- ¹⁷C: Reproducing the position of reported states, we have shown that a new spectrometer system SAMURAI started successful operation.
- ¹⁹C: Relative positions of 1/2⁻ states in ^{17,19}C infers an oblate shape for the ground state of ²⁰C.

Collaborators: — RIKEN, R364n —

- Seoul National University
 - Y.Satou, J.W.Hwang, S.Kim, K.Tshoo, S.Choi
- Tokyo Institute of Technology
 - T.Nakamura, T.Sugimoto, Y.Kondo, N.Matsui,
 Y.Hashimoto, T.Nakabayashi, T.Okumura, M.Shinohara
- RIKEN
 - N.Fukuda, T.Motobayashi, Y.Yanagisawa, N.Aoi,
 S.Takeuchi, T.Gomi, H.Sakurai, H.Otsu, M.Ishihara
- Rikkyo University
 - Y.Togano, S.Kawai
- Tokyo University
 - H.J.Ong, T.K.Onishi
- Center of Study (CNS) Tokyo University
 - S.Shimoura, M.Tamaki
- Tohoku University
 - T.Kobayashi, Y.Matsuda, N.Endo, M.Kitayama

Collaborators: — RIKEN SAMURAI Day-One —

- LPC-Caen, ENSICAEN, University de Caen, CNRS/IN2P3
 - N.L.Achouri, F.Delaunay, J.Gibelin, S.Leblond, M.Marques, N.Orr
- Tokyo Institute of Technology
 - Y.Kondo, T.Nakamura, N.Kobayashi, R.Tanaka, R.Minakata, S.Ogoshi, S.Nishi, D.Kanno, T.Nakashima
- RIKEN
 - H.Baba, P.Doornenbal, N.Fukuda, N.Inabe, T.Isobe, D.Kameda, T.Kubo, J.Lee, H.Otsu, T.Motobayashi, H.Sato, Y.Shimizu, H.Suzuki, H.Takeda, S.Takeuchi, K.Yoneda
- Institute fur Kernphysik, Technische Universitat Darmstadt
 - T.Aumann
- Seoul National University
 - Y.Satou, J.W.Hwang, S.Kim
- Tohoku University
 - T.Kobayashi, K.Muto, K.Takahashi
- Rikkyo University
 - D.Murai
- Kyoto University
 - N.Nakatsuka, T.Murakami
- University of York
 - A.Navin, A.G.Tuff
- Extreme Matter Institute and Research Division, GSI
 - Y.Togano
- Institute de Physique Nucleaire
 - M.Vanderbrouck