Extracting the electric dipole breakup cross section of one-neutron halo nuclei from inclusive breakup observables

K. Yoshida¹, T. Fukui¹, K. Minomo¹, K. Ogata¹

¹RCNP, Osaka University

Probing halo structure

Halo nucleus can be probed with Electric Dipole (E1) break up cross section $\sigma(E1)$.

Probing halo structure

One-neutron removal cross sections from ³¹Ne on Pb and C, σ_{Pb}^{-1n} and σ_{C}^{-1n} were measured at RIBF, RIKEN. T. Nakamura *et al.*, PRL **103**, 262501 (2009).

but, $\sigma(E1)$ is not observable.

E1 cross section formula

$$\sigma(E1) = \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n}$$

Purpose and method

E1 cross section formula

$$\sigma(E1) = \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n}$$

1. Justify the validity of E1 cross section formula 2. Find the value of the scaling factor Γ

We aim to establish a quantitatively reliable method of extracting the E1 breakup cross section from observables.

- CDCC (Continuum-Discretized Coupled-Channel method)
- ERT (Eikonal Reaction Theory)
- Microscopic folding model

Elastic Breakup (EB) & stripping (STR) $\sigma^{-1n} = \sigma^{\rm EB} + \sigma^{\rm STR}$ STR EB Target excitation No target excitation $A(P,c+n)A^*$ A(P,c+n)An С n С n n A^* P A P ERT calculated by CDCC

CDCC

Continuum-Discretized Coupled-Channels method with eikonal approximation (E-CDCC) for exclusive reaction cross sections.

M. Yahiro, K. Ogata, T. Matsumoto, K. Minomo, PTEP 2012, 01A206 (2012).

Non-perturbative, non-adiabatic description of break up reaction.

ERT

Eikonal reaction theory (ERT) as an extension of CDCC for inclusive reaction cross section.

M. Yahiro, K. Ogata, K. Minomo, PTP 126, 167, (2011).

 \wedge

in adiabatic approximation

$$\hat{S} = \hat{S}_c \hat{S}_n$$

solving Schrödinger equations by CDCC

$$[T + U_c + h - E] \Psi = 0 \longrightarrow \hat{S}_c$$
$$[T + U_n + h - E] \Psi = 0 \longrightarrow \hat{S}_n$$
$$\sigma_{n:STR} = \int d\vec{b} \left\langle \phi_0 \left| |\hat{S}_c|^2 (1 - |\hat{S}_n|^2) \right| \phi_0 \right\rangle$$

Microscopic reaction theory

Distorting potential

microscopic folding model for calculating the c-T and n-T potentials.

- HF density for the core and target nuclei.
- Melbourne g-matrix for NN interaction.

K. Amos et al., ANP25, 275 (2000).

Reaction systems

- ✓ Projectiles:¹¹Be,¹⁵C,¹⁹C, ³¹Ne,²⁹Ne,³³Mg, ³⁵Mg, ³⁷Mg, ³⁹Si, ⁴¹Si established 1n-halo candidates
- ✓ Targets:¹²C,¹⁶O,⁴⁸Ca,⁵⁸Ni,⁹⁰Zr,²⁰⁸Pb
- ✓ Incident energy: 250MeV/nucleon

Two important assumptions to establish E1 formula.

$$\sigma(E1) = \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n}$$

• E1 dominance in Coulomb breakup

$$\sigma_{\rm Pb}^{\rm EB}(c) \simeq \sigma_{\rm Pb}^{\rm EB}(E1)$$

• Small interference between Coulomb and Nuclear interaction

$$\sigma_{\rm Pb}^{\rm EB} \simeq \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

We examine

- these two assumptions
- Validity of E1 formula
- Values of Γ factors

E1 dominance in Coulomb breakup $\sigma_{Pb}^{EB}(c) \simeq \sigma_{Pb}^{EB}(E1)$

E1 dominance in Coulomb breakup

 $\sigma_{\rm Pb}^{\rm EB}(c) \simeq \sigma_{\rm Pb}^{\rm EB}(E1)$

Small interference between Coulomb and Nuclear interaction $\sigma_{Pb}^{EB} \simeq \sigma_{Pb}^{EB}(n) + \sigma_{Pb}^{EB}(c)$

- 1. Nuclear breakup at surface, while Coulomb breakup amplitude has a long tail.
- 2. Angular momentum $\ell \rightarrow |\ell_0 \pm 1|$ by E1, but no such selection for the nuclear breakup.

Two important assumptions to establish E1 formula.

• Small interference between Coulomb and Nuclear interaction

$$\sigma_{\mathrm{Pb}}^{\mathrm{EB}} \simeq \sigma_{\mathrm{Pb}}^{\mathrm{EB}}(n) + \sigma_{\mathrm{Pb}}^{\mathrm{EB}}(c)$$

• E1 dominance in Coulomb breakup

$$\sigma_{\rm Pb}^{\rm EB}(c) \simeq \sigma_{\rm Pb}^{\rm EB}(E1)$$

Two important assumptions to establish E1 formula.

• Small interference between Coulomb and Nuclear interaction

$$\sigma_{\mathrm{Pb}}^{\mathrm{EB}} \simeq \sigma_{\mathrm{Pb}}^{\mathrm{EB}}(n) + \sigma_{\mathrm{Pb}}^{\mathrm{EB}}(c)$$

• E1 dominance in Coulomb breakup

$$\sigma_{\rm Pb}^{\rm EB}(c) \simeq \sigma_{\rm Pb}^{\rm EB}(E1)$$

$$\frac{E1 \operatorname{cross section formula}}{\sigma(E1) = \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n}}$$
where Γ is defined by
$$\Gamma = \frac{\sigma_{Pb}^{-1n}(n)}{\sigma_{C}^{-1n}(n)}$$
about 95%

accuracy

Target mass number dependence of $\sigma^{-1n}(n)$

 $\sigma^{-1n}(n)$ are proportional to A^{1/3}.

summary

E1 cross section formula

$$\sigma(E1) = \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n}$$

where Γ is defined by

$$\Gamma = \frac{\sigma_{\rm Pb}^{-1n}(n)}{\sigma_{\rm C}^{-1n}(n)}$$

 Γ has 1n separation energy dependence

$$\Gamma = (2.30 \pm 0.41)e^{-S_n} + (2.43 \pm 0.21)$$

³¹Ne case

deduced $\sigma(E1)=540$ mb will become 13-20% smaller.

K. Yoshida, T. Fukui, K. Minomo, K. Ogata, PTEP 2014, 053D03

We confirmed (for 1n halo systems)

- E1 is dominant in Coulomb breakup $\sigma_{Pb}^{EB}(c) \simeq \sigma_{Pb}^{EB}(E1)$
- Interference between Coulomb and Nuclear interaction is negligible $\sigma_{\rm Pb}^{\rm EB} \simeq \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$
- Stripping reaction is caused by nuclear interaction $\sigma_{\rm Pb}^{\rm STR} \simeq \sigma_{\rm Pb}^{\rm STR}(n)$
- In case of ¹²C target, Nuclear interaction is dominant $\sigma_C^{-1n} \simeq \sigma_C^{-1n}(n)$

E1 cross section formula

$$\sigma(E1) = \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n}$$
$$\sigma_{\rm Pb}^{-1n}(n)$$

about 95% accuracy

where Γ is defined by $\Gamma = \frac{\sigma_{\rm Pb}}{\sigma_{\rm C}^{-1n}(n)}$

$$\sigma_{\rm Pb}^{-1n} = \sigma_{\rm Pb}^{\rm STR} + \sigma_{\rm Pb}^{\rm EB}$$

$$\sigma_{\rm Pb}^{-1n} = \sigma_{\rm Pb}^{\rm STR} + \sigma_{\rm Pb}^{\rm EB}$$

$$\sigma_{\rm Pb}^{\rm STR} \simeq \sigma_{\rm Pb}^{\rm STR}(n)$$

$$\sigma_{\rm Pb}^{\rm EB} \simeq \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

$$\sigma_{\rm Pb}^{-1n} = \sigma_{\rm Pb}^{\rm STR}(n) + \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

$$\sigma_{\rm Pb}^{-1n} = \sigma_{\rm Pb}^{\rm STR} + \sigma_{\rm Pb}^{\rm EB}$$

$$\sigma_{\rm Pb}^{\rm STR} \simeq \sigma_{\rm Pb}^{\rm STR}(n)$$

$$\sigma_{\rm Pb}^{\rm EB} \simeq \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

$$\sigma_{\rm Pb}^{-1n} = \sigma_{\rm Pb}^{\rm STR}(n) + \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

$$\int$$

$$\sigma_{\rm Pb}^{-1n} = \sigma_{\rm Pb}^{-1n}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

$$\sigma_{\rm Pb}^{\rm EB}(c) = \sigma_{\rm Pb}^{-1n} - \sigma_{\rm Pb}^{-1n}(n)$$

$$\sigma_{\rm Pb}^{-1n} = \sigma_{\rm Pb}^{\rm STR} + \sigma_{\rm Pb}^{\rm EB}$$

$$\int_{\sigma_{\rm Pb}^{\rm STR}} \sigma_{\rm Pb}^{\rm STR} \simeq \sigma_{\rm Pb}^{\rm STR}(n)$$

$$\sigma_{\rm Pb}^{\rm EB} \simeq \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

$$\sigma_{\rm Pb}^{-1n} = \sigma_{\rm Pb}^{\rm STR}(n) + \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

$$\int_{\sigma_{\rm Pb}^{-1n}} \sigma_{\rm Pb}^{-1n}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$$

$$\sigma_{\rm Pb}^{\rm EB}(c) = \sigma_{\rm Pb}^{-1n} - \sigma_{\rm Pb}^{-1n}(n)$$

$$\downarrow \qquad \sigma_{\rm Pb}^{\rm EB}(c) \simeq \sigma_{\rm Pb}^{\rm EB}(E1)$$

$$\sigma_{\rm Pb}^{\rm EB}(E1) = \sigma_{\rm Pb}^{-1n} - \sigma_{\rm Pb}^{-1n}(n)$$

$$\downarrow \qquad \Gamma = \sigma_{\rm Pb}^{-1n}(n) / \sigma_{\rm C}^{-1n}(n)$$

$$\sigma_{\rm Pb}^{\rm EB}(c) = \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n}(n)$$

$$\begin{split} \sigma_{\rm Pb}^{\rm EB}(c) &= \sigma_{\rm Pb}^{-1n} - \sigma_{\rm Pb}^{-1n}(n) \\ &\downarrow \qquad \sigma_{\rm Pb}^{\rm EB}(c) \simeq \sigma_{\rm Pb}^{\rm EB}(E1) \\ \sigma_{\rm Pb}^{\rm EB}(E1) &= \sigma_{\rm Pb}^{-1n} - \sigma_{\rm Pb}^{-1n}(n) \\ &\downarrow \qquad \Gamma = \sigma_{\rm Pb}^{-1n}(n) / \sigma_{\rm C}^{-1n}(n) \\ \sigma_{\rm Pb}^{\rm EB}(c) &= \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n}(n) \\ &\downarrow \qquad \sigma_{\rm C}^{-1n}(n) \simeq \sigma_{\rm C}^{-1n} \\ \sigma_{\rm Pb}^{\rm EB}(E1) &= \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n} \\ \end{split}$$

$$\sigma_{Pb}^{EB}(c) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n)$$

$$\downarrow \qquad \sigma_{Pb}^{EB}(c) \simeq \sigma_{Pb}^{EB}(E1)$$

$$\sigma_{Pb}^{EB}(E1) = \sigma_{Pb}^{-1n} - \sigma_{Pb}^{-1n}(n)$$

$$\downarrow \qquad \Gamma = \sigma_{Pb}^{-1n}(n) / \sigma_{C}^{-1n}(n)$$

$$\downarrow \qquad \sigma_{Pb}^{EB}(c) = \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n}(n)$$

$$\downarrow \qquad \sigma_{C}^{-1n}(n) \simeq \sigma_{C}^{-1n}$$

$$\sigma_{Pb}^{EB}(E1) = \sigma_{Pb}^{-1n} - \Gamma \sigma_{C}^{-1n}$$
we want experiment

We confirmed (for 1n halo systems)

- E1 is dominant in Coulomb breakup $\sigma_{Pb}^{EB}(c) \simeq \sigma_{Pb}^{EB}(E1)$
- Interference between Coulomb and Nuclear interaction is negligible $\sigma_{\rm Pb}^{\rm EB} \simeq \sigma_{\rm Pb}^{\rm EB}(n) + \sigma_{\rm Pb}^{\rm EB}(c)$
- Stripping reaction is caused by nuclear interaction $\sigma_{\rm Pb}^{\rm STR} \simeq \sigma_{\rm Pb}^{\rm STR}(n)$
- In case of ¹²C target, Nuclear interaction is dominant $\sigma_C^{-1n} \simeq \sigma_C^{-1n}(n)$

E1 cross section formula

$$\sigma(E1) = \sigma_{\rm Pb}^{-1n} - \Gamma \sigma_{\rm C}^{-1n}$$
$$\sigma_{\rm Pb}^{-1n}(n)$$

about 95% accuracy

where Γ is defined by $\Gamma = \frac{\sigma_{\rm Pb}}{\sigma_{\rm C}^{-1n}(n)}$

$\sigma_{\rm C}^{\rm EB} \simeq \sigma_{\rm C}^{\rm EB}(n)$?

 $\sigma_{\rm C}^{\rm EB} \not\simeq \sigma_{\rm C}^{\rm EB}(n)$

Target mass number dependence of $\sigma^{EB}(n)$

¹²C+¹²C elastic cross section at 135MeV/nucleon

M. Yahiro, K. Ogata, T. Matsumoto, K. Minomo, PTEP2012, 01A206 (review)

CDCC model space (this work)

CDCC model space (this work)

CDCC model spaceSTR(this work)(out of model space)

CDCC model spaceSTR(this work)(out of model space)

CDCC model space STR (this work) (out of model space)

A-R relation

Effective distance $R \equiv (J + 1/2)/K$

A-D relation

 $2\pi RD = \sigma$

A-R relation

A-D relation

multipole expansion

 $V_{1A} \propto \frac{1}{R_1} = \sum_{\lambda} \frac{r^{\lambda}}{R^{\lambda+1}} P_{\lambda}(\cos\theta)$ λ :multipolarity

