Stored Exotic Nuclei

Phil Walker University of Surrey, UK

Stored Exotic Nuclei

- Single-ion observations
- Mass measurements
- Half-lives
- Electron conversion
- Isotope and isomer discoveries
- Future facilities

Phil Walker University of Surrey, UK

GSI accelerator complex

GLOBAL code charge-state calculations for 400 A.MeV ions through Be foil

C. Scheidenberger et al., NIM B142 (1998) 441

SMS and IMS mass measurements

both methods have single-ion sensitivity resolving power ~ 10^6 accuracy ~ $30 \mu u$, i.e. ~ 30 keV

Schottky Mass Spectrometry (with cooling): $T_{\frac{1}{2}} > 1$ s Isochronous Mass Spectrometry: $T_{\frac{1}{2}} > 10 \ \mu s$

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta(m/q)}{m/q} + \frac{\Delta v}{v} \left(1 - \frac{\gamma^2}{\gamma_t^2}\right)$$

SMS and IMS mass measurements

both methods have single-ion sensitivity resolving power ~ 10^6 accuracy ~ $30 \mu u$, i.e. ~ 30 keV

Schottky Mass Spectrometry (with cooling): $T_{\frac{1}{2}} > 1$ s Isochronous Mass Spectrometry: $T_{\frac{1}{2}} > 10 \ \mu s$

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta(m/q)}{m/q} + \frac{\Delta v}{v} (1 - \frac{\gamma^2}{\gamma_t^2})$$

SMS and IMS mass measurements

both methods have single-ion sensitivity resolving power ~ 10^6 accuracy ~ $30 \mu u$, i.e. ~ 30 keV

Isochronous Mass Spectrometry

²³⁸U primary beam at 411 MeV/u

Sun et al., Nucl. Phys. A812 (2008) 1

Shell-model isomer in n-rich ¹³³Sb

Sun et al., Phys. Lett. B688 (2010) 294

electron cooling (~200 mA, ~200 kV)

Schottky Mass Spectrometry

Cooling of ¹⁴²Pm ions (resonant Schottky pick-up)

Orbital frequency (31.25 Hz/ch)

Nolden et al., NIM A659 (2011) 69, and Yu. Litvinov, private communication

^{149m+g}Dy in the ESR

Litvinov et al., Phys. Lett. B573 (2003) 80

[isomers up to I = 55/2 seen in fragmentation: Denis Bacelar et al., Phys. Lett. B723 (2013) 302]

^{149m+g}Dy in the ESR

Litvinov et al., Phys. Lett. B573 (2003) 80

Stefanini et al., Phys. Lett. B62 (1976) 405

New isotopes of heavy elements

New isotopes of heavy elements

Isomer discoveries with stored ions

Penning trap

^{65m}Fe and ^{65g}Fe *M. Block et al., Phys. Rev. Lett.*100 (2008) 132501 at NSCL

Storage ring

^{184m2}Hf and ^{184g}Hf *M.W. Reed et al., Phys. Rev. Lett. 105 (2010) 172501 at GSI*

Isomer discoveries with stored ions

High-K isomers in n-rich ¹⁸⁴Hf

Reed et al., Phys. Rev. Lett. 105 (2010) 172501; Phys. Rev. C86 (2012) 054321

Reed et al., Phys. Rev. Lett. 105 (2010) 172501; Phys. Rev. C86 (2012) 054321

Shubina et al., Phys. Rev. C88 (2013) 024310

Chen et al., Phys. Rev. Lett. 110 (2013) 122502

Exotic nuclei in storage rings

Current: ESR at GSI, Germany CSRe at Lanzhou, China

Commissioning: Rare-RI ring at RIBF, Japan

Construction: CRYRING at GSI, Germany (very low energies)

Advanced stage of planning: Ring Branch at FAIR, Germany TSR at ISOLDE, CERN (Coulomb barrier energies)

Exotic nuclei in storage rings

Current: ESR at GSI, Germany CSRe at Lanzhou, China

Commissioning: Rare-RI ring at RIBF, Japan

Construction: CRYRING at GSI, Germany (very low energies)

Advanced stage of planning: **Ring Branch at FAIR, Germany** TSR at ISOLDE, CERN (Coulomb barrier energies)

Walker, Litvinov and Geissel, Int. J. Mass Spec. 349-350 (2013) 247

Summary – exotic nuclei in storage rings

- Single-ion sensitivity IMS and SMS
- Masses
- Half-lives
- Unavailable electron conversion
- β decay see Yuri Litvinov's talk (Tuesday)
- Isotope and isomer discoveries
- New facilities

many thanks to members of the ILIMA collaboration

"To pursue it with forks and hope"

Lewis Carroll The Hunting of the Snark (1876)

"To pursue it with forks and hope."

GSI, Germany: E. Badura, F. Bosch, C. Brandau, C. Dimopoulou, A. Dolinski, P.Egelhof, A. Evdokimov, B. Franczak, B. Franzke, H. Geissel, F. Herfurth, J. Hoffmann, H.-J. Kluge, R.K. Knöbel, C. Kozhuharov, N. Kurz, S.A. Litvinov, Yu.A. Litvinov, M. Marta, G. Münzenberg, F. Montes, F. Nickel, F. Nolden, C. Nociforo, W. Quint, S. Sanjari, C. Scheidenberger, D. Shubina, H. Simon, A. Sobiczewski, M. Steck, Th. Stöhlker, S. Typel, G.K. Vorobjev, H. Weick, N. Winckler, M. Winkler Gießen, Germany: D. Boutin, T. Dickel, B. Fabian, A. Fettouhi, M. Petrick, W.R. Plaß, D. Zhenyu München, Germany: T. Faestermann, P. Ring, D. Vretenar Frankfurt, Germany: Th. Bürvenich Heidelberg, Germany: K. Blaum, B. Cakirli, A. Palffy Mainz, Germany: K.-L. Kratz, B. Pfeiffer St. Petersburg, Russia: I. Burzov, Yu.N. Novikov, D.M. Seliverstov, Yu. Gusev Orsav, France: G. Audi, D. Lunney Bruxelles, Belgium: S. Goriely, P-H. Heenen, K. Takahashi Thessaloniki, Greece: G.A. Lalazissis Warsaw, Poland: Z. Janas, M. Pfützner, Z. Patyk **ILIMA Collaboration** Stockholm, Sweden: S. Tashenov Surrey, UK: Z. Podolyak, P.M. Walker ILIMA Edinburgh, UK: P.J. Woods, Z. Liu 100 scientists Manchester, UK: D.M. Cullen 29 institutes Catania, Italy: A. Musumarra Madrid, Spain: R. Rodriguez-Guzman 16 countries Belgrade, Serbia: D. Toprek UTK, USA: M. Matoš; TAMU, USA: L. Chen MSU, USA: M. Hausmann, H. Schatz Los Alamos, USA: D. Madland, P. Moeller, D. Vieira TRIUMF. Canada: I. Dillmann Lanzhou, China: X. Ma, R. Mao, Z. Sun, X. Tu, M. Wang, G. Xiao, H. Xu, X. Yan, Y. Zhang, X. Zhou, Y. Yuan Niigata, Japan: T. Ohtsubo Beihang, Beijing, China: B.Sun Saitama, Japan: T. Suzuki, T. Yamaguchi Tsukuba, Japan: A. Ozawa ANU Canberra, Australia: M.W. Reed

single-ion in-ring EC decay

Litvinov et al., Nucl. Phys. A756 (2005) 3

Chen et al., Nucl. Phys. A882 (2012) 71

Reed et al., Phys. Rev. C86 (2012) 054321

Reed et al., Phys. Rev. C86 (2012) 054321; and J. Phys. Conf. Series 381 (2012) 012058

potential for isomer beam purification

Bosch et al., Int. J. Mass Spec. 251 (2006) 212

dielectronic recombination of lithium-like ions

a way to obtain moments, spins and radii, and to purify isomeric beams, using hyperfine shifts and splittings

Brandau et al., Phys. Rev. Lett. 100 (2008) 073201; Hyp. Int. 196 (2010) 195

dielectronic recombination of lithium-like ions

Brandau et al., Phys. Rev. Lett. 100 (2008) 073201; Hyp. Int. 196 (2010) 195

Possibility to prepare <100 keV bare ions

Walker, Litvinov and Geissel, Int. J. Mass Spec. 349-350 (2013) 247