Effects of Tensor Forces in the Ground State of Nuclei

PKU-CUSTIPEN Nuclear Reaction Workshop 2014.3.19

Isao Tanihata Beihang University (China) and Osaka University(Japan)

> Based on: I. Tanihata. (2013). "Effect of tensor forces in nuclei." <u>Physics Scripta</u> 2013 T152: and new data at RCNP and GSI

The big goal:

- Successful models are based on effective men field that are constructed by central forces
- * We know that the nucleon-nucleon interaction, in particular, the important pion exchange includes tensor forces in a same amplitude. $\vec{\sigma}_1 \cdot \vec{q} \cdot \vec{\sigma}_2 \cdot \vec{q} = \frac{1}{3}q^2 S_{12}(\hat{q}) + \frac{1}{3}\vec{\sigma}_1 \cdot \vec{\sigma}_2 q^2$ $S_{12}(\hat{q}) = \sqrt{24\pi} [Y_2(\hat{q})[\sigma_1\sigma_2]_2]_0$
 - R. B. Wiringa:
- 80% of attraction is due to pion
- Tensor interaction is particularly important
- Don't tensor forces introduce abrupt change of an effective mean field?

A State of the art Mean Field model

the nuclear covariant energy density functional

Nuclear mass : Difference between the model and the experimental values.

P. W. Zhao et al., Phys. Rev. C 82, 054319 (2010)

The importance of pion is clear for d, ⁴He

Contributions of various energies to the binding energy of ⁴He nucleus.

M. Sakai, et al., Prog. Theor. Phys. 56(1974)32.

		H-J	
Energy		-20.6	
Kin. E		[131.1]	
Pot. E		-151.7	
_ ¹E		-51.3	
C	³ E	-26.2	
	_ ¹ 0+ ³ 0	-0.4	
-	_ ³ E	-69.7	
	_ ³ O	-0.5	
LS+QLS		-3.6	
P(D)%		12.8	

The importance of pion is clear for d, 4He

4

Contributions of various energies to H-J the binding energy of ⁴He nucleus. -20.6 Energy M. Sakai, et al., Prog. Theor. Phys. 56(1974)32. Kin. E 131.1 $\Delta L=2, \Delta S=2$ p-n pair: yes $p_{1/2}$ Pot. E -151.7 n-n, p-p pair: no **p**_{3/2} -51.3 ^{1}E $S_{1/2}$ ³E -26.2 С $^{1}O+^{3}O$ -0.4 ³E -69.7 30 -0.5 LS+QLS -3.6 P(D)% 12.8

The importance of pion is clear for d, ⁴He

Importance of Tensor force in Nuclei

Selected subjects

Importance of Tensor force in Nuclei Selected subjects

- * Mixing of s- and p-waves in ¹¹Li halo
- Magnetic moment of single particle state
 - Deviation of the magnetic moments of (doubly-closed ±1) nuclei

Importance of Tensor force in Nuclei Selected subjects

- Mixing of s- and p-waves in ¹¹Li halo
- Magnetic moment of single particle state
 - Deviation of the magnetic moments of (doubly-closed ±1) nuclei
- High momentum component of nucleon

s- and p- waves mixing in ¹¹Li

0p_{1/2}

6

 $1s_{1/2}$

s- and p- waves mixing in ¹¹Li

• Momentum distribution of fragments ¹⁰Li

- Equal amount of $p_{1/2}$ and $s_{1/2}$. (Simon 1999)
- Beta-decay
 - 30-40% s_{1/2} wave and small amount of p_{1/2} (Borge 1997)

two-neutron transfer reaction

- $({}^{11}Li + p -> {}^{9}Li + t)$
- 31-45% s1/2 and p1/2
- (Tanihata 2008)

DIFFERENCE BETWEEN SHELL MODEL TREATMENT AND REA

pion exchange:

High Momentum Component

Tensor Optimized Shell Model (TOSM)

Myo, Toki, Ikeda, Kato, Sugimoto, PTP 117 (2006)

 $\Delta L=2, \Delta S=2$ p-n pair: yes n-n, p-p pair: no

0p-0h + 2p-2h

$$\Phi(^{4}\text{He}) = \Sigma_{i} C_{i} \psi_{i}(\{b_{\alpha}\}) = C_{1} (0s)^{4} + C_{2} (0s)^{2} (\overline{0p_{1/2}})^{2} + \cdots$$

size parameter: $b_{0s} \neq b_{\overline{0p}}$

Energy variation

$$\begin{split} H &= \sum_{i=1}^{A} t_{i} - T_{\mathsf{G}} + \sum_{i < j}^{A} v_{ij}, \qquad v_{ij} = v_{ij}^{\mathsf{C}} + v_{ij}^{\mathsf{T}} + v_{ij}^{\mathsf{LS}} + v_{ij}^{\mathsf{C}\mathsf{Imb}} \\ \delta \frac{\langle \Phi \mid H \mid \Phi \rangle}{\langle \Phi \mid \Phi \rangle} &= 0 \quad \Rightarrow \quad \frac{\partial \langle H - E \rangle}{\partial b_{\alpha}} = 0 \ , \quad \frac{\partial \langle H - E \rangle}{\partial C_{i}} = 0. \end{split}$$

EMMI Workshop Feb. 3-7, 2014 @GSI, Darmstadt

Tensor Optimized Shell Model (TOSM)

Myo, Toki, Ikeda, Kato, Sugimoto, PTP 117 (2006)

 $\Delta L=2, \Delta S=2$ p-n pair: yes n-n, p-p pair: no

0p-0h + 2p-2h

$$\Phi(^{4}\text{He}) = \sum_{i} C_{i} \psi_{i}(\{b_{\alpha}\}) = C_{1} (0s)^{4} + C_{2} (0s)^{2} (\overline{0p_{1/2}})^{2} + \cdots$$

Explicitly include 2p-2h excitation due to the tensor forces.
Size of the each orbitals are variational parameters.

$$\frac{\partial \nabla P}{\langle \Phi | \Phi \rangle} = 0 \quad \Rightarrow \quad \frac{\partial \nabla P}{\partial b_{\alpha}} = 0 , \quad \frac{\partial \nabla P}{\partial C_{i}} = 0.$$

EMMI Workshop Feb. 3-7, 2014 @GSI, Darmstadt

T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. <u>76</u> (2007) 024305.

Nobel Symposium NS152 2012.6.10-15 at Göteborg

T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. <u>76</u> (2007) 024305.

Nobel Symposium NS152 2012.6.10-15 at Göteborg

T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. <u>76</u> (2007) 024305.

Nobel Symposium NS152 2012.6.10-15 at Göteborg

T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. <u>76</u> (2007) 024305.

Nobel Symposium NS152 2012.6.10-15 at Göteborg

Mixing of s1/2 and p1/2 is not due to the proximity of single particle states.

T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. <u>76</u> (2007) 024305.

Nobel Symposium NS152 2012.6.10-15 at Göteborg

- Mixings of waves occur due to the Pauli blocking of mixed states.
- Tensor forces introduce mixing of 2p-2h ($\Delta L=2, \Delta S=2$) states with high momentum component.
- Can we observe such high-momentum component?

THEORETICAL PREDICTIONS

THEORETICAL PREDICTIONS

(P,D) SCATTERING

= SUITABLE TO PICK UP HIGH MOMENTUM NEUTRON =

K. Sekiguchi et al., PRL **95** (2004) 162301

(P,D) SCATTERING

= SUITABLE TO PICK UP HIGH MOMENTUM NEUTRON =

K. Sekiguchi et al., PRL **95** (2004) 162301

(P,D) SCATTERING

= SUITABLE TO PICK UP HIGH MOMENTUM NEUTRON =

NECESSARY BEAM ENERGIES

Momentum transfer in (p,d) scattering. p+12C ->d+11C (blue, red, green) and p+d -> d+p (purple)

EXPERIMENT AT RCNP

RCNP Ring Cyclotron Facility

grandRAIDEN spectrometer

 ${}^{16}O(p,d){}^{15}O$ at $E_p=200 - 400$ MeV at $\theta_s=10^{\circ}$

DATA AT RCNP

H.J. Ong et al. Phys. Lett. B 725, 277 (2013)

Transition to 1/2+ is as strong as the transition to the ground state.

The dashed (dotted) curve represents the ratios of the 1p3/2 (1d5/2) and 1p1/2, obtained by zero-range CDCC-BA calculations with finite-range correction using the Dirac phenomenological potentials. (by K. Ogata) Wavefuncions are from Wood-Saxon potential.

The dashed (dotted) curve represents the ratios of the 1p3/2 (1d5/2) and 1p1/2, obtained by zero-range CDCC-BA calculations with finite-range correction using the Dirac phenomenological potentials. (by K. Ogata) Wavefuncions are from Wood-Saxon potential.

The dashed (dotted) curve represents the ratios of the 1p3/2 (1d5/2) and 1p1/2, obtained by zero-range CDCC-BA calculations with finite-range correction using the Dirac phenomenological potentials. (by K. Ogata) Wavefuncions are from Wood-Saxon potential.

1/2^{+,} 3/2⁺ STATES IN ¹⁵O AS AN EXAMPLE

1/2^{+,} 3/2⁺ STATES IN ¹⁵O AS AN EXAMPLE

The dashed (dotted) curve represents the ratios of the 1p3/2 (1d5/2) and 1p1/2, obtained by zero-range CDCC-BA calculations with finite-range correction using the Dirac phenomenological potentials. (by K. Ogata) Wavefuncions are from Wood-Saxon potential.

H.J. Ong et al. Phys. Lett. B 725, 277 (2013)

$$\sigma_F = K \frac{P_d}{p} N(P_F) \left[B_D + \frac{\hbar^2}{M} (\mathbf{p} - \mathbf{P}_d/2)^2 \right]^2 \left| (\varphi(r), e^{i(\mathbf{p} - \mathbf{P}_d \cdot \mathbf{r}/2)}) \right|^2$$

K: phase space constant, B_D: deutron binding nergy, M: nucleon mass by G. F Chew and M.L. Goldberger Phys. Rev. 77 (1950) 470.

The dashed (dotted) curve represents the ratios of the 1p3/2 (1d5/2) and 1p1/2, obtained by zero-range CDCC-BA calculations with finite-range correction using the Dirac phenomenological potentials. (by K. Ogata) Wavefuncions are from Wood-Saxon potential.

H.J. Ong et al. Phys. Lett. B 725, 277 (2013)

$$\sigma_F = K \frac{P_d}{p} N(P_F) \left[B_D + \frac{\hbar^2}{M} (\mathbf{p} - \mathbf{P}_d/2)^2 \right]^2 \left| (\varphi(r), e^{i(\mathbf{p} - \mathbf{P}_d \cdot \mathbf{r}/2)}) \right|^2$$

K: phase space constant, B_D: deutron binding nergy, M: nucleon mass by G. F Chew and M.L. Goldberger Phys. Rev. 77 (1950) 470.

The dashed (dotted) curve represents the ratios of the 1p3/2 (1d5/2) and 1p1/2, obtained by zero-range CDCC-BA calculations with finite-range correction using the Dirac phenomenological potentials. (by K. Ogata) Wavefuncions are from Wood-Saxon potential.

H.J. Ong et al. Phys. Lett. B 725, 277 (2013)

REACTION MECHANISM?

- Measurement at $\theta_s=0^\circ$ is least sensitive to the reaction mechanism.
- New measurement at RCNP @ 400 MeV
 - θ_s=0 10°
- New measurement at GSI @400, 600, 900, 1200 MeV
 - $\theta_s=0^\circ$: covers up to 2.5 fm⁻¹

Beihang-RCNP-GSI-.. Collaboration

$$\sigma_F = K \frac{P_d}{p} N(P_F) \left[B_D + \frac{\hbar^2}{M} (\mathbf{p} - \mathbf{P}_d/2)^2 \right]^2 \left| (\varphi(r), e^{i(\mathbf{p} - \mathbf{P}_d \cdot \mathbf{r}/2)}) \right|^2$$

K: phase space constant, B_D: deutron binding nergy, M: nucleon mass by G. F Chew and M.L. Goldberger Phys. Rev. 77 (1950) 470.

The dashed (dotted) curve represents the ratios of the 1p3/2 (1d5/2) and 1p1/2, obtained by zero-range CDCC-BA calculations with finite-range correction using the Dirac phenomenological potentials. (by K. Ogata) Wavefuncions are from Wood-Saxon potential.

$$\sigma_F = K \frac{P_d}{p} N(P_F) \left[B_D + \frac{\hbar^2}{M} (\mathbf{p} - \mathbf{P}_d / 2)^2 \right]^2 \left| (\varphi(r), e^{i(\mathbf{p} - \mathbf{P}_d \cdot \mathbf{r} / 2)}) \right|^2$$

K: phase space constant, B_D: deutron binding nergy, M: nucleon mass by G. F Chew and M.L. Goldberger Phys. Rev. 77 (1950) 470.

$$\sigma_F = K \frac{P_d}{p} N(P_F) \left[B_D + \frac{\hbar^2}{M} (\mathbf{p} - \mathbf{P}_d / 2)^2 \right]^2 \left| \left(\varphi(r)_e e^{i \left(\mathbf{p} - \mathbf{P}_d * \mathbf{r} / 2 \right)} \right)^2 \right|^2$$

K: phase space constant, B_D: deutron binding nergy, M: nucleon mass by G. F Chew and M.L. Goldberger Phys. Rev. 77 (1950) 470.

Summary

- Tensor forces plays important roles for binding nuclei.
- It also contribute to changes of orbitals in new ways.
- Tensor forces can not be included in a mean field model in a explicit way.
- Effects of tensor forces depend strongly on configurations of nucleons.
- One of the direct method to see tensor forces effect is to observe high-momentum components of nucleons in nuclei.
- We need a model that treat the tensor force explicitly in the base wave function for heavier nuclei. The effect of highmomentum nucleons should not be forgotten.

Collaborators

(p,d) (p,pd) reaction

Beihang University

S. Terashima, B.H. Sun, G. Chenlei

RCNP, Osaka U.

H.J.Ong,	A. Tamii,	H. Okamura,	M. Yosoi
K. Suda,	T. Adachi,	Y. Tameshige,	H. Matsubara
D. Ishikawa,	H. Sakaguchi,	H. Toki,	T. Myo
Y. Ogawa			

Dep. Phys., Osaka Univ.

K. Matsuta,

M. Fukuda, M. Mihara,

D. Nishimura

Tsukuba Univ.

A. Ozawa

RIKEN

K. Sekiguchi, K. Ikeda

GSI

H. Geissel and Super-FRS collaboration group

ANSWER TO THE QUESTION:

Do tensor forces introduce abrupt change of an effective mean field?

- Yes,
- For example: ¹²C and ¹⁶O

