

Facility for Rare Isotope Beams Overview

Bradley Sherrill Director NSCL, FRIB Scientific Director

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Introduction This workshop is a wonderful opportunity to discuss mutual goals, challenges, and collaboration
- Overview of FRIB
- Challenges
- Capabilities
- Experimental equipment
- Science program harvesting

Facility for Rare Isotope Beams

Thomas Glasmacher, FRIB Laboratory Director

- Funded by the US DOE– Office of Science Nuclear Physics Program with contributions from Michigan State University
- Key feature is 400 kW beam power for all ions (8pµA or 5x10^{13 238}U/s)
- Separation of isotopes in-flight provides
 - Fast development time for any isotope
 - Beams of all elements and short half-lives
 - Fast, stopped, and reaccelerated beams

FRIB Civil Construction Substantially Complete – Now Installing Accelerator

FRIB construction site March 2017

Web cameras at www.frib.msu.edu

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Timeline

- Early 1990s Community effort to push construction of a new rare isotope facility (ISOL)
- 2002 NSAC Long Range Plan endorsement
- 2007 NSAC Top priority for new construction
- September 2010 CD-1 approved
- April 2012 Lehman review, baseline and start of civil construction
- August 2013 CD-2 approved (baseline), CD-3a approved (start civil construction pending FY2014 federal appropriation)
- March 2014 Start civil construction
- August 2014 CD-3b approved (technical construction)
- October 2017 First accelerated beam in LINAC hall
- by December 2017 Planned first liquid from FRIB cryoplant
- 2021 End of NSCL operations
- 2021 Early completion goal
- June 2022 CD-4 (scheduled project completion)

FRIB Partners

- Argonne National Laboratory
 - Liquid lithium charge stripper; Arg Stopping of ions in gas; Fragment separator design; Beam dynamics; SRF

- Radiation resistant magnets; Plasma charge stripper
- Fermilab

Laboratory

- Diagnostics
- Jefferson Laboratory

Brookhaven National

- Cryogenics; SRF
- Lawrence Berkeley National Laboratory
 - ECR ion source; Beam dynamics
- Oak Ridge National Laboratory
 - Target facility; Beam Dump R&D; Cryogenic Controls
- Stanford National Accelerator Lab
 - Cryogenics
- Sandia
 - Production target

🛟 Fermilab

Jefferson Lab

Facility for Rare Isotope Beams

- Budker Inst. of Nuclear Physics (Russia)
 - Production target
- GANIL (France)
 - Production target
- GSI (Germany)
 - Production target
- IMP of CAS (China)
 - Magnets
- INFN Legnaro (Italy)
 - SRF
- KEK (Japan)
 - SRF technology, SC solenoid magnets
- RIKEN (Japan)
 - Charge strippers
- Soreq (Israel)
 - Production target
- Tsinghua University (China)
 - RFQ
- TRIUMF (Canada)
 - SRF, beam dynamics

FRIB Accelerator Building

J. Wei (head of FRIB Accelerator Division), P. Ostroumov, J. Yamazaki, K. Saito, et al.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

B. Sherrill 2nd China-US-RIB Meeting, Slide 7

FRIB Superconducting LINAC

J. Wei (head of FRIB Accelerator Division), P. Ostroumov, J. Yamazaki, K. Saito, et al.

- Accelerate ion species up to ²³⁸U with energies of at least 200 MeV/u
- Provide beam power up to 400kW
- Energy upgrade to 400 MeV/u for ²³⁸U by filling vacant slots with 12 SRF cryomodules
- Provisions for ISOL upgrade

Beam Delivery System To Target

Room-Temperature

Folding Segment

FRI

U.S. Department of Energy Office of Science Michigan State University

FRIB Accelerator Performance

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Cryomodule Production, Testing, and Installation Underway

Coldmass assembly in clean room

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University The three β=0.041 cryomodules installed and being cabled up in the FRIB tunnel

FRIB Cryoplant Overview

Scheduled to Make 4K Liquid in 2017, 50% larger than SNS Cryogenic Plant

Challenge of FRIB – High Power Accelerators

- Beam Power
- $P[kW] = I [\mu A] x E [GeV/u] x A$
- FRIB operation will be challenging like facilities such as SNS or JPARC
- FRIB will have multiple different beams
- FRIB may change beams every couple weeks

FRIB Year-One Beams and Development Plan

J. Wei, J. Yamazaki et al.

- ³⁶Ar and ⁸⁶Kr will be developed as part of FRIB Project, primary beams beyond ³⁶Ar and ⁸⁶Kr will be developed during early operations and operations
- Additional beams will be added each year, power increased over 5 years
- Proposal is to run 32 weeks/y for science, but will take time to reach that due to complexity of accelerating multiple charge states
- Beam losses will limit power ramp-up, mitigation takes time and experience
- Past experience for proton machines, SNS and J-PARC, indicates steep learning curve

Year 1 Beams	Notional Weeks Year 1	Years after	Beam power on target
²³⁸ U	6	CD-4	goal (kW)
⁴⁸ Ca	3	1	10
⁷⁸ Kr	2	2	50
⁸² Se	3	3	100
¹²⁴ Xe	1	4	200
¹⁸ O	-	5	400
⁸⁶ Kr	4		
¹⁶ O	-		
³⁶ Ar	-		

FRIB Facility Overview

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

In-Flight Production of Rare Isotopes at NSCL

D.J. Morrissey, B.M. Sherrill, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 356 (1998) 1985.

The same concept will be used at FRIB, but with a new LINAC and separator

National Science Foundation Michigan State University

FRIB Fragment Separator

M. Haussmann, G. Bollen (FRIB Experimental System Division), et al.

- Three stage fragment separator for production and delivery of rare isotope beams (high power preseparator and high resolution stage 2 and 3)
- Must be able to accommodate 400 kW and allow ion-by-ion ID

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Vessels for Rare Isotope Production Fabricated, Installed and Leak Checked

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Rotating Carbon Production Target

- F. Pellemoine et al. (W. Mittig)
- Multi-slice rotating graphite disk target
 - Capable of withstanding 400 kW primary beam
 - 30 cm diameter disks rotating at 5000 rpm
 - High power density: ~ 20 60 MW/cm³
- Target module on track for on-schedule completion
 - 99% of target module parts ordered 65% received
- Additional early operations target will be developed
 - "Ladder" with multiple targets, blank, and viewer screen to be exchanged with rotating target disk module

Beam Dump Status: Rotating Drum with Water

- F. Pellemoine et al. (W. Mittig)
- Thin-walled water-filled rotating drum
 - Water cools drum shell and absorbs up to 325 kW of beam power
- Additional static beam dump for commissioning and first years of operation to be developed
- Working on harvesting of isotopes from the water White Paper in preparation (G. Severin et al.)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Users Engaged and Ready for Science

www.fribusers.org

- Users are organized as part of the independent FRIB Users Organization (FRIBUO)
 - Chartered organization with an elected executive committee
 - Approximately 1,400 members (250 Institutions world wide, 51 countries) as of September 2017
 - 19 working groups on instruments
- Yearly User Meeting
- Science Advisory Committee Advice on User Initiatives
 - 2011 Review of equipment initiatives
 - 2012 Review of FRIB design
 - 2013 Review of equipment working group progress
 - 2015 Review of equipment priorities
 - 2016 Reviewed day-1 science program and major equipment status
 - Next SAC meeting 2018 (Equipment)
 - First PAC about one year prior to operation

FRIB Facility Overview

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Current Facility – National Superconducting Cyclotron Laboratory (NSCL)

- National User Facility funded by US National Science Foundation – NSCL 85 graduate and 120 undergraduate students
- NSCL enables forefront research: Stability of atomic nuclei, history of element formation, search for new physics, applications of isotopes for societal needs
- Opportunity to prepare for FRIB: Same user group FRIBUO, 1400 members (50 nations involved)
- First system for in-flight separation and reacceleration of rare isotopes ReA3, which 👡 became operational in 2015

Operation of NSCL user facility is supported by NSF **Physics Division**

NSCL Facility

National Science Foundation Michigan State University

ReA3 (soon ReA6) at NSCL

Helium-Jet Ion-Guide System (HJ-IGS) for commensal (multi-user) operation at NSCL

- Rare isotopes that would otherwise be lost are caught in a high-pressure cell filled with a helium-aerosol mixture placed off-axis in the fragment separator
- Collected isotopes are transported through a capillary to the helium-jet ion source, where helium is pumped away and the rare isotopes are ionized
- Rare isotopes can be used in the stopped and reaccelerated experimental areas

National Science Foundation Michigan State University

FRIB Experimental Capabilities

Radioactive Ion Beams are needed/available in three energy domains

FRIB Equipment Status – Not Complete

Bold Funded, Blue FRIB SAC priority

ltem	Status	ltem	Status
GRETINA	Operational	Penning Traps	Operational
GRETA	CD1 2017	Scintillator Arrays	Conceptual stage
SECAR	Completed 2020	Silicon Arrays	Operational and Conceptual stage
Recoil Separator ReA12	White paper in 2014	SiEFUS	NSF MRI
High Rigidity Spectrograph	Preliminary design and white paper 2014	Atom Traps	Under development at ANL/TRIUMF
SOLARIS	DOE ANL, Planning	Harvesting	White Paper 2017
MONA/LISA	Operational	AT-TPC	Operation in 2015
Decay Station	Existing Equipment; White paper 2017	ANASEN	Operational
BECOLA	Operational	SUN	Operational
CRIS	NSF MRI	CAESER	Operational
VANDLE/LENDA	Operational	ReA3 (3-6 MeV/u)	Operation in 2015
EOS Detector	TPC at RIKEN; conceptual	ReA6 (6-10 MeV/u)	NSF Approved 2017

Future Equipment Opportunities

- Fundamental symmetries traps
- Storage Rings
- TPC for EOS studies
- Active target for high energy

Blue/Green NSCL Red FRIB Light Green - Expansion

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

FRIB Scientific Program

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Application of FRIB Isotopes

- FRIB offers fast development for 1000s of isotopes (via harvesting in parallel to normal operation)
- Isotopes extracted from the water of the beam dump or in catchers located along the fragment separator (offers parallel operation)
- Isotopes for medical research
 - Examples: ⁴⁷Sc, ⁶²Zn, ⁶⁴Cu, ⁶⁷Cu, ⁶⁸Ge, ¹⁴⁹Tb, ¹⁵³Gd, ¹⁶⁸Ho, ¹⁷⁷Lu, ¹⁸⁸Re, ²¹¹At, ²¹²Bi, ²¹³Bi, ²²³Ra (DOE Isotope Workshop)
 - α -emitters ¹⁴⁹Tb, ²¹¹At: potential treatment of metastatic cancer
 - Cancer therapy of hypoxic tumors based on ⁶⁷Cu treatment/⁶⁴Cu dosimetry
- Tracers for Marine Studies (³²Si), Condensed Matter (⁸Li), industrial tracers (⁷Be, ²¹⁰Pb, ¹³⁷Cs, etc.), ...
- Data for advance reactor design and destruction of nuclear waste

Summary

- FRIB construction is going well and is scheduled to be completed by 2022 (Early completion in 2021)
- Key features of FRIB include 400 kW primary beams, fast-stoppedreaccelerated beams of rare isotopes
- Described FRIB LINAC, cryoplant, target, beam dump, separator, experimental areas and equipment
- FRIB will enable a broad science program: Structure, Nuclear Astrophysics, Fundamental Symmetries, and Applications of Isotopes

