

2nd China-US-RIB Meeting on Physics of Nuclei and Hadrons CUSTIPEN-Beijing Workshop Oct 16-18,2017

Soft Multipole Collective Modes in ⁴⁰Mg

Kai Wang, Junchen Pei (School of Physics, PKU) M. Kortelainen (University of Jyvaskyla)

- Halo--extended dilute surface, soft modes...
- Nuclear astrophysical interests
- Explain few-body physics by many-body methods
- Extrapolate, verify and improve theoretical modes

¹¹Li

Collective excitations of weakly bound nuclei

- Novel relative motion between halo/skin and core: collective or non-collective? Three-Fluid Hydrody
- Enhance astrophysical neutron capture rates
- Related to continuum, neutron halo, deformation, EOS, symmetry energy, incompressibility...

Three-Fluid Hydrodynamical Model of Nuclei*

Radhe Mohan PRC, 1971

(T. Oishi, et.al, Phys.Rev. C 93, 034329 (2016)) 3

Various deformed halos---shape decoupling---How to detect?

T. Misu, W. Nazarewicz, S. Aberg, Nucl. Phys. A 614, 44(1997) S.G. Zhou et al., PRC 2010; J.C.Pei et al., PRC 2013

• The flow pattern of PDR in weakly bound nuclei (a long-standing question)

V.O. Nesterenko, J. Kvasil, A. Repko, W. Kleinig, P.-G. Reinhard, arXiv:1602.03326 Can be studied directly by transition currents in deformed QRPA

Comparative experimental study of

splittings in K=0 and K=1 modes in

GDR and PDR

 Deformed QRPA is needed even for spherical nuclei because internal motions is prohibited due to symmetry

Methods: Deformed continuum FAM-QRPA

Several spherical continuum QRPA:

- M. Matsuo, Nucl. Phys. A 696, 371 (2001).
- E. Khan, N. Sandulescu, M. Grasso, and N. V. Giai, Phys. Rev. C 66, 024309(2002).

- A numerical challenge for **deformed continuum QRPA**
- Standard QRPA in the matrix form is extremely expensive for deformed nuclei, even more to include continuum configuration (a huge matrix)

Finite-Amplitude-Methods-QRPA provides alternative way solving QRPA equation iteratively rather than diagonalization

(FAM-RPA, T. Nakatsukasa, PRC, 2007)

Time(year)	Implement	Authors(Group)
2007	3D FAM-RPA	T.Nakatsukasa, et al.
2011	Spherical FAM-QRPA (based on HFBRAD code)	P.Avogadro, T.Nakatsukasa
2011	Deformed Monopole modes (base on HFBTHO code)	M.Stoitsov, M.Kortelainen <i>et al</i>
2013	Monopoles modes in relativistic RPA/QRPA	T. Niksic <i>et al</i> Haozhao Liang, <i>et al</i>
2013	Discrete states and strengths(based on HFB-THO)	N.Hinohara, M.Kortelainen, W. Nazarewicz, E.Olsen
2014	Beta decay (based on HFB-THO)	M. T. Mustonen and J. Engel
2014	Soft monopole modes (based on HFB- AX code)	J.C.Pei, M.Kortelainen, Y.N.Zhang F.R.Xu
2015	Multipole modes (based on HFB-THO)	M.Kortelainen, N.Hinohara, W.Nazarewicz
2017	Soft Multipole modes (based on HFB- AX code)	K.Wang, M.Kortelainen, J.C.Pei

- HFB-AX output: axial-deformed wavefunctions (17 GB) and energies
- B-spline lattice transformed to Gauss-Legendre lattice
- FAM-QRPA procedure:
 - 1. Construct full transition densities (including time-odd terms):

$$\begin{split} \delta\rho(\omega) &= UXV^T + V^*Y^TU^{\dagger}.\\ \delta\kappa^{(+)}(\omega) &= UXU^T + V^*Y^TV^{\dagger},\\ \delta\kappa^{(-)}(\omega) &= V^*X^{\dagger}V^{\dagger} + UY^*U^T,\\ \left\{s_{\phi}, j_r, j_z, (\nabla \times \mathbf{j})_{\phi}, (\nabla \times \mathbf{s})_r, (\nabla \times \mathbf{s})_z, (\Delta \mathbf{s})_{\phi}, T_{\phi}\right\}\\ \mathcal{E}_t^{\text{even}} &= C_t^{\rho}\left[\rho\right]\rho_t^2 + C_t^{\tau}\rho_t\tau_t + C_t^{\Delta\rho}\rho_t\Delta\rho_t + C_t^{\nabla J}\rho_t\nabla \mathbf{J} + C^J\mathbf{J}_t^2,\\ \mathcal{E}_t^{\text{odd}} &= C_t^s\left[\rho\right]\mathbf{s}_t^2 + C_t^{\Delta s}\mathbf{s}_t\cdot\Delta\mathbf{s}_t + C_t^T\mathbf{s}_t\cdot\mathbf{T}_t + C_t^j\mathbf{j}_t^2 + C_t^{\nabla j}\mathbf{s}_t\cdot\nabla\times\mathbf{j}_t \\ &+ C_t^{\nabla s}\left(\nabla\mathbf{s}_t\right), \end{split}$$

• 2. Calculate H²⁰, H⁰² (including time-odd terms), F²⁰, etc

$$\begin{split} \delta H^{20}_{\mu\nu}(\omega) &= U^{\dagger} \delta h V^* - V^{\dagger} \delta \Delta^{(-)*} V^* + U^{\dagger} \delta \Delta^{(+)} U^* \\ &- V^{\dagger} \delta h^T U^*, \\ \delta H^{02}_{\mu\nu}(\omega) &= -V^T \delta h U + U^T \delta \Delta^{(-)*} U - V^T \delta \Delta^{(+)} V \\ &+ U^T \delta h^T V. \end{split}$$

- 3. Calculate X, Y; and do Broyden non-linear iterations on X, Y.
- 4. Finally calculate the strength

$$X_{\mu\nu} = -\frac{\delta H_{\mu\nu}^{20}(\omega) - F_{\mu\nu}^{20}}{E_{\mu} + E_{\nu} - \omega}, \quad Y_{\mu\nu} = -\frac{\delta H_{\mu\nu}^{02}(\omega) - F_{\mu\nu}^{02}}{E_{\mu} + E_{\nu} + \omega}.$$
$$S(F, \omega) = \frac{1}{2} \sum_{\mu\nu} \left\{ F_{\mu\nu}^{20*} X_{\mu\nu}(\omega) + F_{\mu\nu}^{02*} Y_{\mu\nu}(\omega) \right\},$$

• Combined MPI+OpenMP parallel calculations in TH-1A,TH-2 supercomputers

SLy4+volume pairing and surface pairing (100Zr, 24Mg)

- Last Mg isotope, weakly bound deformed
- Prolate-oblate coexistence in ⁴⁰Mg (N=28)
- Experimental interests of spectroscopy (H. Crawford)

Shape evolution from oblate $^{\rm 42}Si$ to prolate $^{\rm 40}Mg$

A good case to probe excitations based on different shapes

core-halo density—contour lines

There is no evident core-halo decoupling, however.....

Isovector dipole Strength

• Box size dependence:

Large box is needed for smooth the resonances, otherwise, PDR is fragmented.

• Self-consistency:

Very clear low-energy PDR without spurious states

Disproportionate splitting:

<u>The splitting is proportional to</u> <u>deformation and centroid energy</u> Prolate PDR splitting is 1.4 (0.95) MeV Oblate PDR splitting is 0.45 (1.05) MeV

Disproportionate splitting is not due to static core-halo shape decoupling

Kai Wang, M. Kortelainen, J.C. Pei, PRC96,031301 (R) 2017-12-

Related to the excessive neutrons at surfaces and isoscalar dipole modes

- A long-sought collective and compressional dipole structures, poles at \pm 12 fm
- the simplest flow topology with the lowest energy
- Flow patterns characterized by
 -2.0 boundary lines

Flow pattern in GDR

Kai Wang, M. Kortelainen, J.C. Pei, PRC96,031301 (R) 2017

Flow patterns are robust physical phenomena, independent of box sizes

Isoscalar dipole can have pollutions of spurious states

Current flows of isoscalar monopole modes

- Monopole flow patterns are non-trivial and becomes complicated as E* increases
- Toroidal mode is favorable in oblate shape

J.C.Pei, K.Wang, M.Kortelained, J. Phys .Conf. Ser.

Summary

- Developed the fully self-consistent deformed continuum FAM-QRPA for multipole excitations in shape-coexisting ⁴⁰Mg
- Monopole mode is dominated, with lowest excitation energy
- Disproportionate pygmy deformation splitting not due to static shape decoupling
- Amazing flow topologies related to energies has been revealed in a large spatial mesh; the long-sought PDR is collective and compressional.
- Toroidal mode is favorable in oblate shape

Thanks for your attention!