

The spin content of the nucleon sea from recent RHIC experimental data

Chang Gong (Peking Univ.)

CUSTIPEN-Beijing Workshop on RIB Science 2nd China-US-RIB Meeting Supervisor: Bo-Qiang Ma Collaborator: Fang Tian 2017/10/16

> Based on : F. Tian, C. Gong, B.-Q. Ma, Nucl.Phys. A968 (2017) 379-390 F. Tian, C. Gong, B.-Q. Ma, Nucl.Phys. A961 (2017) 154-168

Outline

- motivation
- Effect of sea quarks on $A_L^{W^{\pm}}$
- Effect of sea quarks on $A_N^{W^{\pm}}$
- Summary

STAR data: Phys.Rev.Lett. 113 (2014), 072301

DSSV08 RHICBOS: D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang Phys.Rev. D80 (2009) 034030 DSSV08 CHE NLO: E. Leader , A. V. Sidorov , D. B. Stamenov Phys.Rev. D82 (2010) 114018 LSS10 CHE NLO: D. de Florian and W. Vogelsang, Phys. Rev. D 81, 094020 (2010) DSSV08 LO: P. M. Nadolsky and C. Yuan, Nucl. Phys. B666, 31(2003)

Motivation

- Proton spin structure
- Polarized proton-proton collision experiments

• At leading order,

$$A_{L}^{W^{+}} = \frac{-\Delta u(x_{1})\bar{d}(x_{2}) + \Delta \bar{d}(x_{1})u(x_{2})}{u(x_{1})\bar{d}(x_{2}) + \bar{d}(x_{1})u(x_{2})}$$
$$A_{L}^{W^{-}} = \frac{-\Delta d(x_{1})\bar{u}(x_{2}) + \Delta \bar{u}(x_{1})d(x_{2})}{d(x_{1})\bar{u}(x_{2}) + \bar{u}(x_{1})d(x_{2})}$$

• Comparing with the experimental data of $A_L^{W^{\pm}}$, many extractions or parametrizations of quark helicity distributions from DIS and SIDIS data prefer a sizable positive $\Delta \bar{u}$ distributions and a negative $\Delta \bar{d}$ distributions.

 In our work, for the valence quark helicity distributions, we adopt the quark-spectator-diquark model (qD model).

- We extract the sea quark helicity distributions from the corresponding single spin asymmetries of W^{\pm} bosons(RHIC) and $\Gamma_1^{p,n}$ (COMPASS).
- Linear form: $\Delta \overline{q}(x) = N_{\overline{q}}\overline{q}(x)$, q = u or d
- Nonlinear form: F. Tian, C. Gong, B.-Q. Ma, Nucl. Phys. A961 (2017) 154-168 $\Delta \overline{q}(x) = n_{\overline{q}} \frac{\Gamma(a_{\overline{q}} + b_{\overline{q}} + 2)}{\Gamma(a_{\overline{q}} + 1)\Gamma(b_{\overline{q}} + 1)} x^{a_{\overline{q}}} (1 - x)^{b_{\overline{q}}} \overline{q}(x) \quad q = u \text{ or } d$

Relation		βD	Data	Parameter								
	Mode			$N_{\bar{u}}$	$N_{\tilde{d}}$	n _ū	nā	$a_{\bar{u}}$	$a_{\bar{d}}$	$b_{\bar{u}}$	bā	
Linear	1	990	W±	0.242	-0.309	543	-	1243	-	5 2 3	-	
	2	330	$W^{\pm} + \Gamma_1^{p,n}$	0.001	-0.040	1775	-			0.755	-	
	3	600	W [±]	0.254	-0.440	-		-	=		-	
	4		$W^{\pm} + \Gamma_1^{p,n}$	0.009	-0.057	543	1000	140	<u>2</u>	523		
NLinear	5	990	W±	170	0.00	0.150	-0.225	1.0	1.0	3.0	3.0	
	6	330	$W^{\pm} + \Gamma_1^{p,n}$	-	-	0.010	-0.197	1.0	1.0	3.0	3.0	
	7	200	W [±]	(23)		0.159	-0.319	1.0	1.0	3.0	3.0	
	8	600	$W^{\pm} + \Gamma_1^{p,n}$			0.100	-0.276	1.0	1.0	3.0	3.0	

• From the table, we can see that the signs of $\Delta \bar{u}$ are positive and the signs of $\Delta \bar{d}$ are negative for all modes.

F. Tian, C. Gong, B.-Q. Ma, Nucl.Phys. A961 (2017) 154-168

Relation	Mode	β_D	Data	Quantity								
				Γ_1^p	Γ_1^n	$\Delta\Sigma$	Δu^+	Δd^+	$\Delta \bar{u}$	$\Delta \bar{d}$		
Linear	1	330	w±	0.289	-0.210	0.282	1.64	-1.35	0.396	-0.508		
	2		$W^{\pm} + \Gamma_1^{p,n}$	0.163	-0.057	0.380	0.851	-0.471	0.002	-0.066		
	3	600	w^{\pm} .	0.245	-0.285	-0.144	1.521	-1.666	0.415	-0.724		
	4		$W^{\pm} + \Gamma_1^{p,n}$	0.137	-0.050	0.316	0.720	-0.404	0.015	-0.093		
NLinear	5	330	w±	0.186	-0.078	0.391	0.991	-0.599	0.071	-0.130		
	6		$W^{\pm} + \Gamma_1^{p,n}$	0.159	-0.078	0.290	0.857	-0.567	0.005	-0.114		
	7	600	W [±]	0.154	-0.083	0.256	0.842	-0.585	0.075	-0.184		
	8		$W^{\pm} + \Gamma_1^{p,n}$	0.145	-0.075	0.250	0.786	-0.536	0.048	-0.159		
Parametrization	_		NNPDFpol1.1 [35]	_	_	0.25 ± 0.10	0.76 ± 0.04	-0.41 ± 0.04	0.04 ± 0.05	-0.09 ± 0.05		
	_	_	DSSV08 [35]	_	_	$+0.366^{+0.042}_{-0.062}$ (+0.124)	$+0.793^{+0.028}_{-0.034}$ (+0.020)	$-0.416^{+0.035}_{-0.025}(-0.042)$	$+0.028^{+0.059}_{-0.059}(+0.008)$	$-0.089^{+0.090}_{-0.080}$ (-0.026)		

Quantities from model calculations at $Q = \sqrt{10}$ GeV.

• For linear form (without the constraints of $\Gamma_1^{p,n}$),

F. Tian, C. Gong, B.-Q. Ma, Nucl.Phys. A961 (2017) 154-168

The linear form (with the constraints of $\Gamma_1^{p,n}$),

F. Tian, C. Gong, B.-Q. Ma, Nucl. Phys. A961 (2017) 154-168

For nonlinear form (without the constraints of $\Gamma_1^{p,n}$),

F. Tian, C. Gong, B.-Q. Ma, Nucl. Phys. A961 (2017) 154-168

For nonlinear form (with the constraints of $\Gamma_1^{p,n}$),

F. Tian, C. Gong, B.-Q. Ma, Nucl. Phys. A961 (2017) 154-168

- From mode 1-8, we know that $A_L^{W^{\pm}}$ need large sizes of sea quark helicity distributions to match the experimental data at RHIC.
- By reconsidering the valence quark helicity distributions in the qD model, corresponding to mode 4 and mode 8, we can see that the results can give both reasonable results of $\Delta\Sigma$ and $A_L^{W^{\pm}}$.
- Comparing mode 4 and mode 8, we can see that the $A_L^{W^{\pm}}$ data have strong constraints on the explicit forms of sea quarks helicity distributions. The x-dependent relation can describe the data better.

F. Tian, C. Gong, B.-Q. Ma, Nucl.Phys. A961 (2017) 154-168

$$A_{N} = \frac{\sum_{q} |V_{q\bar{q}}|^{2} |\Delta^{N}f_{a/p\uparrow}(x_{1}) \cdot f^{\bar{q}}(x_{2}) + 1 \leftrightarrow 2]}{\sum_{q} |V_{q\bar{q}}|^{2} |F_{a/p}(x_{1}) \cdot f^{\bar{q}}(x_{2}) + 1 \leftrightarrow 2]}$$

Valence quarks Sivers function:

Parameters

Para¹⁶: M. Anselmino et al, J. High Energy phys. 1704 (2017), 046

qD model: Zhun lu, Bo-Qiang Ma, Nucl. Phys. A 741 (2004),200

- Valence Sivers functions: adopt Para¹⁶ and qD model.
- We extract the sea quark Sivers functions from the transversely single spin asymmetries of W^{\pm} bosons $A_N^{W^{\pm}}$.

$$\begin{split} f_{q/p}(x,k_{\perp}) &= f_q(x) \frac{1}{\pi \langle k_{\perp}^2 \rangle} e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle} ,\\ \Delta^N f_{q/p^{\uparrow}}(x,k_{\perp}) &= 2 \,\mathcal{N}_q(x) \,h(k_{\perp}) \,f_{q/p}(x,k_{\perp}) ,\\ \mathcal{N}_q(x) &= N_q \; x^{\alpha_q} (1-x)^{\beta_q} \; \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta_q}} ,\\ h(k_{\perp}) &= \sqrt{2e} \; \frac{k_{\perp}}{M_1} \, e^{-k_{\perp}^2/M_1^2} , \end{split}$$

Parameterization forms

				Parameter								
$\Delta^N q_V$	Mode	$\langle k_{\perp}^2 \rangle$	Data	$N_{\bar{u}}$	$N_{\bar{d}}$	$lpha_{ar u}$	$\alpha_{\bar{d}}$	$\beta_{ar{u}}$	$eta_{ar{d}}$	M_1		
Para ¹⁶	1	0.57	W [±]	-1.0	-1.0	4.559	3.265	14.97	14.903	$\sqrt{0.8}$		
qD model	2	0.57	W [±]	-1.0	-1.0	3.338	3.293	11.370	14.185	1.241		
qD model	2	0.57	W -	-1.0	-1.0	3.338	3.295	11.370	14.185			

F. Tian, C. Gong, B.-Q. Ma, Nucl. Phys. A968 (2017) 379-390

- The theoretical calculations of $A_N^{W^{\pm}}$ could match the experimental data with sizable sea quarks Sivers functions.
- The sea quarks Sivers function have the same sign,

 $\Delta^N \bar{u} < 0 \qquad \Delta^N \bar{d} < 0$

while the sea quarks helicity distributions have different signs, $\Delta \, \bar{u} > 0 \qquad \Delta \bar{d} < 0$

F. Tian, C. Gong, B.-Q. Ma, Nucl.Phys. A968 (2017) 379-390

Summary

- The longitudinal single-spin asymmetry of W^{\pm} are sensitive to the helicity distributions of quarks, especially the sea quarks.
- Further studies of both sea and valence quarks helicity distributions of the nucleon are needed.
- The transversely single-spin asymmetry of W^{\pm} prefer sizable Sivers functions of u and d sea quarks, with both of then have opposite signs to that of valence u Sivers functions.

Thanks!