Angular momentum in projectile fragmentation

High-spin states

Isomeric beams

Zsolt Podolyák

University of Surrey

Fragmentation

Fragmentation (spallation) reactions at relativistic energies:

Cross section: measures the end product What would give information about abrasion?

Angular (and linear) momentum

In flight fragmentation (and fission): separation and identification

Isomeric decay spectroscopy:

- decay correlated with the fragment
- very sensitive

SUSIDIUM

flight time ~300ns

Stopped Rising Array @ GSI: 15 x 7 element CLUSTERs

 $\varepsilon_v = 11\%$ at 1.3 MeV, 20% at 550 keV, 35% at 100 keV

Highest spin from fragmentation: I=(55/2) isomer in ²¹³Rn

Fig. 1. Gamma-ray energy spectrum obtained in coincidence with ²¹³Rn ions using a time gate of width 1.4 µs starting ~50 ns after the prompt flash. The transitions used to obtain the isomeric ratios for the $(55/2)^+$, $43/2^-$, $31/2^-$ and $25/2^+$ levels are denoted # * % and @ respectively.

A.M. Denis Bacelar et al., Phys. Lett. B 723, 302 (2012)

Isomers are special

W.-D. Schmidt-Ott et al., Z. Phys. A 350 (1994) 215.

M. Bowry et al., Phys. Rev. C 88, 024611 (2013)

Isomeric ratio vs spin

M. Bowry et al., Phys. Rev. C 88, 024611 (2013)

²³⁸U beam

Population of isomers by *two-proton knockout* reaction in ²⁰⁶Hg

E.Simpson et al., Phys. Rev. C 80 (2009) 064608.

if A projectile - A fragment ~ large

Statistical abrasion-ablasion model (ABRABLA code)

Excitation energy

Angular momentum

~27 MeV/abrated nucleon=

=2 x single particle (holes) energy

Ablated nuclei/abraded nuclei ~2

Good cross sections

from single particle

states only

Is this good enough?

M. De Jong, A.V. Ignatyuk and K.-H. Schmidt, Nucl. Phys. A 613 (1997) 435

M. Bowry et al., Phys. Rev. C 88, 024611 (2013)

¹⁸⁶W(¹⁶O,6n) at 110 MeV; ¹⁷⁰Er(³⁰Si,4n) at 144 MeV

fusion-evaporation reaction! $\varphi = I_{isomer} / (I_{parallel} + I_{isomer}) = I_{isomer} / I_{total}$ $\rho_{exp} = R_{exp} / \varphi$

 ρ_{exp} - the probability of populating states with higher spin than the isomer – can be compared with theory!

Without structure considerations

With structure considerations

Zs. P., Acta Phys. Pol. B36 (2005) 1269

M. Bowry et al., Phys. Rev. C 88, 024611 (2013)

Fragments are slower than projectile: momentum shift (friction)

We need to couple: single particle holes *I* (any direction in 3D) collective *I* (2D)

- **single particle only** (Analytical)
 - single particle + collective

A.M. Denis Bacelar et al., Phys. Lett. B 723, 302 (2012)

Comparison with theory (sharp cut-off approx.)

Simplified theory (analytical formula)

M. De Jong, A.V. Ignatyuk and K.-H. Schmidt, Nucl. Phys. A 613 (1997) 435

FIG. 8. (Color online) Isomeric ratios determined in the current study (see Table I) compared with the theoretical population predicted by the analytical formula only [Eq. (3)] plotted as a function of angular momentum of the isomeric state. The spin-cutoff parameter in Eq. (3) was multiplied by a factor of 2.
M. Bowry et al., Phys. Rev. C 88, 024611 (2013)

Conclusions

Isomeric ratios from two-particle removal understood High-spin states are produced with higher probability than expected (isometric beams) At high-spins the angular momentum from abraded nuclei are not enough: contributions from evaporation, friction, excitations Reasonable predictability for isomer production -factor of two *if* structure is known (I<15hbar)

PHYSICAL REVIEW C 88, 024611 (2013)

Population of high-spin isomeric states following fragmentation of ²³⁸U

M. Bowry,¹ Zs. Podolyák,¹ S. Pietri,² J. Kurcewicz,² M. Bunce,¹ P. H. Regan,¹ F. Farinon,² H. Geissel,^{2,3} C. Nociforo,² A. Prochazka,² H. Weick,² N. Al-Dahan,¹ N. Alkhomashi,¹ P. R. P. Allegro,⁴ J. Benlliure,⁵ G. Benzoni,⁶ P. Boutachkov,² A. M. Bruce,⁷ A. M. Denis Bacelar,⁷ G. F. Farrelly,¹ J. Gerl,² M. Górska,² A. Gottardo,⁸ J. Grębosz,⁹ N. Gregor,² R. Janik,¹⁰ R. Knöbel,² I. Kojouharov,² T. Kubo,¹¹ N. Kurz,² Yu. A. Litvinov,² E. Merchan,² I. Mukha,² F. Naqvi,¹² B. Pfeiffer,^{2,3} M. Pfützner,¹³ W. Plaß,³ M. Pomorski,¹³ B. Riese,² M. V. Ricciardi,² K.-H. Schmidt,² H. Schaffner,² C. Scheidenberger,^{2,3} E. C. Simpson,¹ B. Sitar,¹⁰ P. Spiller,² J. Stadlmann,² P. Strmen,¹⁰ B. Sun,^{2,14} I. Tanihata,¹⁵ S. Terashima,¹⁴ J. J. Valiente Dobón,⁸ J. S. Winfield,² H.-J. Wollersheim,² and P. J. Woods¹⁶ ¹Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ²GSI, Planckstrasse 1, D-64291 Darmstadt, Germany ³IInd Physical Institute, Justus-Liebig University Giessen, D-35392 Giessen, Germany ⁴University of São Paulo, São Paulo 05508-900, Brazil ⁵University Santiago de Compostela, 15706 Santiago de Compostela, Spain ⁶INFN Sezione di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy ⁷School of Computing Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom ⁸INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy ⁹The Henryk Niewodniczański Institute of Nuclear Physics, PL-31-342 Kraków, Poland ¹⁰Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia ¹¹RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ¹²Department of Physics, University of Yale, New Haven, Connecticut 06511-8499, USA ¹³Faculty of Physics, University of Warsaw, PL-00-681 Warsaw, Poland ¹⁴School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China ¹⁵Research Center for Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan ¹⁶School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom (Received 2 June 2013; published 16 August 2013)

Thanks!

Abrasion (incl. friction) (relativistic transport model) **Abrasion+ablation** (+sequential binary decay)

Ion	Ιπ	E (keV)	R_{exp} [%]	R ^{ART} [%]	R ^{SBD} _{the} [%]
²¹¹ Fr	29/2+	2423	5.7(19)	2.59	10.03
²¹² Fr	15-	2492	7.5(18)	2.24	9.15
²¹³ Fr	29/2+	2538	12(8)	2.65	10.82
²¹⁴ Ra	17-	4147	6.8(23)	0.58	3.20
²¹⁵ Ra	43/2-	$3757 + \Delta$	3.1(6)	0.07	0.82

Better agreement

S. Pal and R. Palit, Phys. Lett. B 665 (2008) 164.

The highlighted points: higher lying isomers decay int

$\frac{\text{Nuclear structure has to be considered}}{\frac{12}{123} + \frac{13}{9} + \frac{19}{9} + \frac{19}{99} + \frac{19}{99} + \frac{19}{270} + \frac{19}{270} + \frac{19}{270} + \frac{12}{29} + \frac{19}{99} + \frac{12}{270} + \frac{19}{270} + \frac{19}{270} + \frac{12}{29} + \frac{19}{99} + \frac{12}{270} + \frac{19}{270} + \frac{19}{29} + \frac{19}{270} + \frac{19}{29} + \frac{19}{20052} + \frac{11}{9} + \frac{19}{19} + \frac{19}{19}$

¹⁹⁶Pb: A.K.Singh *et al.*, Nucl. Phys. A707 (2002) 3

¹⁸⁶W(¹⁶O,6n) at 110 MeV; ¹⁷⁰Er(³⁰Si,4n) at 144 Me⁵

 $fusion_{isomer}(I_{parallel}^{total}) = I_{isomer}$ $\int_{exp}^{I} I_{exp} / \phi$

 ho_{exp} - the probability of populating states with higher spin than the isomer - can be compared with t

M. De Jong, A.V. Ignatyuk and K.-H. Schmidt, Nucl. Phys. A 613 (1997) 435

M. Bowry et al., Phys. Rev. C 88, 024611 (2013)

M. Bowry et al., Phys. Rev. C 88, 024611 (2013)

$$P_{I} = \frac{2I+1}{2\sigma_{f}^{2}} \exp\left(\frac{-I(I+1)}{2\sigma_{f}^{2}}\right) \implies R_{th}^{f} = \exp\left(\frac{-I_{m}(I_{m}+1)}{2\sigma_{f}^{2}}\right)$$
$$\sigma_{f}^{2} = \langle j_{z}^{2} \rangle \frac{(A_{p} - A_{f})(\nu A_{p} + A_{f})}{(\nu + 1)^{2}(A_{p} - 1)} \implies \nu=2$$

M. De Jong, A.V. Ignatyuk and K.-H. Schmidt, Nucl. Phys. A 613 (1997) 435

Comparison with theory

Fragmentation/spallation is (one of the) main source(s) of radioactive beams/exotic nuclei

Fragmentation reaction at relativistic energies

How to study fragmentation? Cross section: measures the end product What would give information about abrasion?

<u>Angular</u> (and linear) momentum

 \searrow from isomers

238U fragmentation (A~200-210)

Comparison with theory (sharp cut-off approx.)

We need to couple: single particle holes *I* (any direction in 3D) collective *I* (2D)

- **single particle only** (Analytical)
 - single particle + collective

Comparison with theory (sharp cut-off approx.)

Passive stopper:

For isomeric decays, T1/2< 1 ms

Theory Abrasion-ablation model

Angular momentum distribution: ABRABLA code (abrasion stage).

- M. Pfützner *et al.*, Phys. Lett. B444 (1998) 32.
- M. Pfützner *et al.*, Phys. Rev. C65 (2002) 064604.

a mahahility of nonulating states

Zs. Podolyák et al., Phys. Lett. B632 (2006) 203.

High-spin isomers from ²³⁸U fragmentation:

- M. Pfützner *et al.*, Phys. Lett. B444 (1998) 32.
- M. Pfützner *et al.*, Phys. Rev. C65 (2002) 064604.

a mahahility of nonulating states

The highlighted points: higher lying isomers decay int

Stopped Rising Array @ GSI: 15 x 7 element CLUSTERs ϵ_{γ} =11% at 1.3 MeV, 20% at 550 keV, 35% at 100 keV flight time ~300ns

d U, eam 2

Study [Ref]	Projectile / Energy	Target	Range, Z	Range, A	Range, I (\hbar)	No. Nuclei	No. IR
M. Pfützner <i>et al</i> [1]	238 U @ 1 GeV/A	$1.0 \text{ g/cm}^2 \text{ Be}$	$81 \rightarrow 83$	$203 \rightarrow 212$	$7 \rightarrow 20$	10	10
M. Pfützner et al [2]	$^{208}{\rm Pb}$ @ 1 GeV/A	$1.6 \text{ g/cm}^2 \text{ Be}$	$62 \rightarrow 80$	$136 \rightarrow 206$	$5/2 \rightarrow 35/2$	18	26
K.A. Gladnishki et al [3]	$^{238}{\rm U}$ @ 0.75 GeV/A	$1.6~{\rm g/cm^2~Be}$	$80 \rightarrow 84$	$188 \rightarrow 202$	$5 \rightarrow 33/2$	12	14
M. Caamaño et al, [4]	$^{208}{\rm Pb}$ @ 1 GeV/A	$1.6~{\rm g/cm^2~Be}$	$73 \rightarrow 79$	$188 \rightarrow 203$	$7 \rightarrow 19/2$	11	13
Zs. Podolyák et al [5, 6]	$^{238}{\rm U}$ @ 0.9 GeV/A	$1.0~{\rm g/cm^2~Be}$	$86 \rightarrow 89$	$207 \rightarrow 215$	$13/2 \rightarrow 43/2$	13	13
AM Denis Bacelar * [7]	238 U @ 1 GeV/A	$2.5~{\rm g/cm^2~Be}$	$84 \rightarrow 89$	$198 \rightarrow 215$	$13/2 \rightarrow 55/2$	24	50
S.J. Steer $et \ al \ [8]$	$^{208}{\rm Pb}$ @ 1 GeV/A	$2.5~{\rm g/cm^2~Be}$	$73 \rightarrow 81$	$188 \rightarrow 206$	$9/2 \rightarrow 33/2$	31	39
S. Myalski et al [9]	$^{208}{\rm Pb}$ @ 1 GeV/A	$2.5~{\rm g/cm^2~Be}$	$62 \rightarrow 67$	$142 {\rightarrow} 153$	$11/2 \rightarrow 27$	9	10
M.D. Bowry (2012) *	238 U @ 1 GeV/A	$1.6 \text{ g/cm}^2 \text{ Be}$	$78 \rightarrow 86$	$192 \rightarrow 215$	$7 \rightarrow 25$	24	23
Total IR					1		198

- [1] M. Pfützner et al., Phys. Lett. B 444, 32 (1998).
- [2] M. Pfützner et al., Phys. Rev. C 65, 064604 (2002).
- [3] K.A. Gladnishki et al., Phys. Rev. C 69, 024617 (2004).
- [4] M. Caamaño et al., Eur. Phys. J. A 23, 201-215 (2005).
- [5] Zs. Podolyák et al., Phys. Lett. B 632, 203-206 (2006).
- [6] Zs. Podolyák, Private Communication.
- [7] AM Denis Bacelar, PhD. Thesis (unpublished), (2011).
- [8] S.J. Steer et al., Phys. Rev. C 84, 044313 (2011).
- [9] S. Myalski et al., Acta. Phys. Pol. B 43, 253-259 (2012).

In flight fragmentation: separation and identification

Decay (internal and β , α) spectroscopy:

- decay out from the isomer is correlated with the fragment

```
(100 \text{ ns} - 1 \text{ ms})
```

- very sensitive (ion beams > 1 ion/hour)

$\frac{\text{Nuclear structure has to be considered}}{\frac{12}{123} + \frac{13}{9} + \frac{19}{9} + \frac{19}{99} + \frac{19}{99} + \frac{19}{270} + \frac{19}{270} + \frac{19}{270} + \frac{12}{29} + \frac{19}{99} + \frac{12}{270} + \frac{19}{270} + \frac{19}{270} + \frac{12}{29} + \frac{19}{99} + \frac{12}{270} + \frac{19}{270} + \frac{19}{29} + \frac{19}{270} + \frac{19}{29} + \frac{19}{20052} + \frac{11}{9} + \frac{19}{19} + \frac{19}{19}$

¹⁹⁶Pb: A.K.Singh *et al.*, Nucl. Phys. A707 (2002) 3

¹⁸⁶W(¹⁶O,6n) at 110 MeV; ¹⁷⁰Er(³⁰Si,4n) at 144 Me⁵

 $fusion_{isomer}(I_{parallel}^{total}) = I_{isomer}$ $\int_{exp}^{I} I_{exp} / \phi$

 ho_{exp} - the probability of populating states with higher spin than the isomer - can be compared with t

Comparison with theory (sharp cut-off approx.)

Isomeric beams: population of high-spin states in projectile fragmentation

Zsolt Podolyák

University of Surrey

Fragmentation/spallation is (one of the) main source(s) of radioactive beams/exotic nuclei

Fragmentation reaction at relativistic energies

How to study fragmentation? Cross section: measures the end product What would give information about abrasion?

<u>Angular</u> (and linear) momentum

 \searrow from isomers

In flight fragmentation: separation and identification

Decay (internal and β , α) spectroscopy:

- decay out from the isomer is correlated with the fragment

```
(100 \text{ ns} - 1 \text{ ms})
```

- very sensitive (ion beams > 1 ion/hour)

Isomers are special

W.-D. Schmidt-Ott et al., Z. Phys. A 350 (1994) 215.

Isomeric ratios from ²⁰⁸Pb and ²³⁸U fragmentation

Population of isomers by two-proton knockout reaction in ²⁰⁶Hg

E.Simpson et al., Phys. Rev. C 80 (2009) 064608.

Abrasion-ablasion model (ABRABLA code)

Excitation energy

~27 MeV/abrated nucleon=

=2 x single particle (holes) energy

Ablated nuclei/abraded nuclei ~2

Good cross sections

M. De Jong, A.V. Ignatyuk and K.-H. Schmidt, Nucl. Phys. A 613 (1997) 435

Angular momentum

from single particle

states only

Is this good enough?

238U fragmentation (A~200-210)

¹⁸⁶W(¹⁶O,6n) at 110 MeV; ¹⁷⁰Er(³⁰Si,4n) at 144 MeV

fusion-evaporation reaction! $\varphi = I_{isomer} / (I_{parallel} + I_{isomer}) = I_{isomer} / I_{total}$ $\rho_{exp} = R_{exp} / \varphi$

 ρ_{exp} - the probability of populating states with higher spin than the isomer – can be compared with theory!

Without structure considerations

With structure considerations

Zs. P., Acta Phys. Pol. B36 (2005) 1269

Fragments are slower than projectile: momentum shift (friction)

Abrasion (incl. friction) (relativistic transport model) **Abrasion+ablation** (+sequential binary decay)

Ion	Ιπ	E (keV)	R_{exp} [%]	R ^{ART} [%]	R ^{SBD} _{the} [%]
²¹¹ Fr	29/2+	2423	5.7(19)	2.59	10.03
²¹² Fr	15-	2492	7.5(18)	2.24	9.15
²¹³ Fr	29/2+	2538	12(8)	2.65	10.82
²¹⁴ Ra	17-	4147	6.8(23)	0.58	3.20
²¹⁵ Ra	43/2-	$3757 + \Delta$	3.1(6)	0.07	0.82

Better agreement

S. Pal and R. Palit, Phys. Lett. B 665 (2008) 164.

¹⁷⁹W populated in:

fragmentation of ²⁰⁸Pb at 1 GeV/u

fusion evaporation: ¹⁷⁰Er(¹³C,4n) at 67 MeV

- M. Pfützner *et al.*, Phys. Lett. B444 (1998) 32.
- M. Pfützner *et al.*, Phys. Rev. C65 (2002) 064604.

a mahahility of nonulating states

Zs. Podolyák et al., Phys. Lett. B632 (2006) 203.

High-spin isomers from ²³⁸U fragmentation:

- M. Pfützner *et al.*, Phys. Lett. B444 (1998) 32.
- M. Pfützner *et al.*, Phys. Rev. C65 (2002) 064604.

a mahahility of nonulating states

Study [Ref]	Projectile / Energy	Target	Range, Z	Range, A	Range, I (\hbar)	No. Nuclei	No. IR
M. Pfützner <i>et al</i> [1]	238 U @ 1 GeV/A	$1.0 \text{ g/cm}^2 \text{ Be}$	$81 \rightarrow 83$	$203 \rightarrow 212$	$7 \rightarrow 20$	10	10
M. Pfützner et al [2]	$^{208}{\rm Pb}$ @ 1 GeV/A	$1.6 \text{ g/cm}^2 \text{ Be}$	$62 \rightarrow 80$	$136 \rightarrow 206$	$5/2 \rightarrow 35/2$	18	26
K.A. Gladnishki et al [3]	$^{238}{\rm U}$ @ 0.75 GeV/A	$1.6~{\rm g/cm^2~Be}$	$80 \rightarrow 84$	$188 \rightarrow 202$	$5 \rightarrow 33/2$	12	14
M. Caamaño et al, [4]	$^{208}{\rm Pb}$ @ 1 GeV/A	$1.6~{\rm g/cm^2~Be}$	$73 \rightarrow 79$	$188 \rightarrow 203$	$7 \rightarrow 19/2$	11	13
Zs. Podolyák et al [5, 6]	$^{238}{\rm U}$ @ 0.9 GeV/A	$1.0~{\rm g/cm^2~Be}$	$86 \rightarrow 89$	$207 \rightarrow 215$	$13/2 \rightarrow 43/2$	13	13
AM Denis Bacelar * [7]	238 U @ 1 GeV/A	$2.5~{\rm g/cm^2~Be}$	$84 \rightarrow 89$	$198 \rightarrow 215$	$13/2 \rightarrow 55/2$	24	50
S.J. Steer $et \ al \ [8]$	$^{208}{\rm Pb}$ @ 1 GeV/A	$2.5~{\rm g/cm^2~Be}$	$73 \rightarrow 81$	$188 \rightarrow 206$	$9/2 \rightarrow 33/2$	31	39
S. Myalski et al [9]	$^{208}{\rm Pb}$ @ 1 GeV/A	$2.5~{\rm g/cm^2~Be}$	$62 \rightarrow 67$	$142 {\rightarrow} 153$	$11/2 \rightarrow 27$	9	10
M.D. Bowry (2012) *	238 U @ 1 GeV/A	$1.6 \text{ g/cm}^2 \text{ Be}$	$78 \rightarrow 86$	$192 \rightarrow 215$	$7 \rightarrow 25$	24	23
Total IR					1		198

- [1] M. Pfützner et al., Phys. Lett. B 444, 32 (1998).
- [2] M. Pfützner et al., Phys. Rev. C 65, 064604 (2002).
- [3] K.A. Gladnishki et al., Phys. Rev. C 69, 024617 (2004).
- [4] M. Caamaño et al., Eur. Phys. J. A 23, 201-215 (2005).
- [5] Zs. Podolyák et al., Phys. Lett. B 632, 203-206 (2006).
- [6] Zs. Podolyák, Private Communication.
- [7] AM Denis Bacelar, PhD. Thesis (unpublished), (2011).
- [8] S.J. Steer et al., Phys. Rev. C 84, 044313 (2011).
- [9] S. Myalski et al., Acta. Phys. Pol. B 43, 253-259 (2012).

Fragmentation (spallation) reactions at relativistic energies:

Isomeric ratio

M. De Jong, A.V. Ignatyuk and K.-H. Schmidt, Nucl. Phys. A 613 (1997) 435

E. C. Simpson, J. A. Tostevin, Zs. Podolyák, P. H. Regan, and S. J. Steer, Phys. Rev. C 82, 037602 (2010)

Highest spin from fragmentation: I=(55/2)

Fig. 1. Gamma-ray energy spectrum obtained in coincidence with ²¹³Rn ions using a time gate of width 1.4 µs starting ~50 ns after the prompt flash. The transitions used to obtain the isomeric ratios for the $(55/2)^+$, $43/2^-$, $31/2^-$ and $25/2^+$ levels are denoted #, *, % and @ respectively. 213Rn:A.E. Stuchbery et al., NPA 482 (1988) 692

A.M. Denis Bacelar et al., Phys. Lett. B 723, 302 (2012)

¹⁷⁹W populated in:

fragmentation of ²⁰⁸Pb at 1 GeV/u

fusion evaporation: ¹⁷⁰Er(¹³C,4n) at 67 MeV

M. Bowry et al., Phys. Rev. C 88, 024611 (2013)

