Neutron-skin thickness of heavy-ions studied with $\alpha\text{-particle scattering}$

Pang Danyang

School of Physics and Nuclear Energy Engineering

Beihang University

In collaboration with Prof. Jirina Stone (University of Oxford)

August 14, 2014

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 1 / 32

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

Introduction

Precision required: $\Delta R_n/R_n < 1\%$

D.Y. Pang (Beihang)

Introduction

Effect of $\Delta R_n/R_n \sim 1\%$ is visible in angular distributions

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 3 / 32

Introduction

Introduction

Question: how to get R_n from α -elastic scattering?

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 4 / 32

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Diffraction of light

Double-slit with light

$$\Delta y = \frac{D}{d} \lambda \Rightarrow \Delta \theta = \frac{\Delta y}{D} = \frac{\lambda}{d} = \frac{2\pi}{kd} = \frac{\pi}{k(d/2)}$$

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 5 / 32

3

イロト イヨト イヨト イヨト

Diffraction of α -particle

Double-slit with α -particle

$$\Delta heta pprox rac{\pi}{kR}$$

G.R. Satchler, Direct Nuclear Reactions, Chapter 11

< 47 ▶

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 6 / 32

Diffraction of light

Double-slit with light

Double-slit with α -particle

 $\Delta\theta\approx\frac{\pi}{kR}$

Question: how does this R relate to the radius of the nucleus?

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 7 / 32

Logic chain in this work

Double-slit with α -particle

$$\Delta heta pprox rac{\pi}{kR} = rac{\pi}{kR_{SA}}$$

- Angular distribution \Leftrightarrow Strong absorption radius R_{SA}
- **2** $R_{SA} \Leftrightarrow$ radius of the optical potential R_U
- **3** $R_U \Leftrightarrow$ neutron density distribution ρ_n
- $\rho_n \Leftrightarrow$ neutron radius R_n

D.Y. Pang (Beihang)

Strong absorption radius R_{SA}

G.R. Satchler, Direct Nuclear Reactions, Chapter 11

CUSTIPEN/PKU

August 14, 2014 9 / 32

Strong absorption radius and rms radius of OMP

 R_{SA} change closely with the changes of R_U

Double-folding model of OMP

The double-folding model

 $U_{DF}(R) = \iint \rho_1(r_1)\rho_2(r_2)V_{NN}(|\boldsymbol{s}|)\mathrm{d}r_1\mathrm{d}r_2.$

relation of RMS radii in double-folding model

 $\langle R_{U_{DF}}^2 \rangle \text{ depends on incident energy} \Rightarrow \text{Need calibration of } U_{DF} \text{ for } \langle R_2^2 \rangle$ M.E. Brandan and G.R. Satchler, Phys. Rep. 285, 143 (1997)

D.Y. Pang (Beihang)

CUSTIPEN/PKU

The systematic single-folding α -nucleus potential

 $U_{SF}(R) = \iint \rho_1(r_1) U_{NA}(|\mathbf{s}|) dr_1, \ U_{NA} \text{ being JLMB (JLM+Bruyères)}$ systematics

E. Bauge, J.P. Delaroche, and M. Girod, PRC 63, 024607 (2001)

renormalization factors N_r and N_i $U(E, R) = \frac{N_r(E)\text{Re}[U_{SF}(E, R)] + \frac{N_i(E)\text{Im}[U_{SF}(E, R)]}{\text{DYP, Y.L. Ye, F.R. Xu, Phys. Rev. C 83, 064619 (2011)}}$

D.Y. Pang (Beihang)

< □ > < □ > < □ > < □ > < □ > < □ >

The systematic single-folding α -potential

Energy dependence of N_r and N_i

DYP, Y.L. Ye, F.R. Xu, Phys. Rev. C 83, 064619 (2011)

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 13 / 32

The systematic single-folding α -potential

Comparison with experimental data

D.Y. Pang (Beihang)

CUSTIPEN/PKU

Reduction of potential ambiguities

Discrete ambiguities

D.G. Perkin, A.M. Kobos, and J.R. Rook, NPA 245, 343 (1975), D.F. Jackson and R.C. Johnson, PLB 49, 249 (1974)

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 15 / 32

Reduction of potential ambiguities

 Discrete ambiguities removed by selection of N_r families, guided by theoretical models
 D.G. Perkin, A.M. Kobos, and J.R. Rook, NPA 245, 343 (1975)
 D.F. Jackson and R.C. Johnson, PLB 49, 249 (1974)

2 continuum ambiguities a well-known one is $VR_U^n = \text{constant}$, in folding model R_U is uniquely determined by R_p , R_t and $R_{V_{NN}}$

See, e.g., G.R. Satchler, Direct Nuclear reactions, Chap.12

 correlations of real and imaginary parts reduced in systematically fitting many sets of data

See, e.g., L. Freindl et al., Acta Phys. Pol. B11, 405 (1980)

D.Y. Pang (Beihang)

CUSTIPEN/PKU

▲□ ト イポト イヨト イヨト ヨークへで August 14, 2014 15 / 32

Uncertainties in N_r and N_i

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 16 / 32

The SkX interaction in HF calculations

SkX was obtained by fitting:

- binding energies for ^{16,24}O, ³⁴Si, ^{40,48}Ca, ^{48,68}Ni, ⁸⁸Sr, ^{100,132}Sn and ²⁰⁸Pb with "errors" ranging from 1.0 MeV for ¹⁶O to 0.5 MeV for ²⁰⁸Pb
- rms charge radii for ¹⁶O, ^{40,48}Ca, ⁸⁸Sr and ²⁰⁸Pb with "errors" ranging from 0.03 fm for ¹⁶O to 0.01 fm for ²⁰⁸Pb
- About 50 Single particle energies with "errors" ranging from 2.0 MeV for ¹⁶O to 0.5 MeV for ²⁰⁸Pb

B.A. Brown, PRC 58, 220 (1998), PREX Aug. 17 (2008)

(日) (周) (日) (日) (日) (0) (0)

HF with SkX for systematic density distributions

The SkX interaction in HF calculations

SkX in reproduction of charge density distributions

B.A. Brown, PREX Aug. 17 (2008)

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 18 / 32

Test of the systematic potential

α elastic scattering at 104 MeV

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 20 / 32

CUSTIPEN/PKU

August 14, 2014 20 / 32

D.Y. Pang (Beihang)

D.Y. Pang (Beihang)

August 14, 2014

Shift of scattering angls wrt $\Delta R_n/R_n$ (α +²⁰⁸Pb 104 MeV)

D.Y. Pang (Beihang)

August 14, 2014 21 / 32

・ロト ・聞ト ・ヨト ・ヨト

Shift of scattering angls wrt $\Delta R_n/R_n$ (α +²⁰⁸Pb 104 MeV)

Shift of scattering angles wrt E_{lab} (A MeV) with $\Delta R_n/R_n = 0.01$

E_{lab} (A MeV)	⁵⁸ Ni	¹¹⁶ Sn	²⁰⁸ Pb
20	0.22	0.32	0.45
40	0.15	0.16	0.24
80	0.06	0.07	0.08

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014

Determine R_n of ²⁰⁸Pb with SkX at $E_{\alpha} = 139$ MeV

$$R_n = 5.661 \pm 0.024$$
 fm
 $\Delta r_{np} = 0.220 \pm 0.024$ fm

D.Y. Pang (Beihang)

CUSTIPEN/PKU

$$R_n = 5.638 \pm 0.020 \text{ fm}$$

 $\Delta r_{np} = 0.198 \pm 0.022 \text{ fm}$

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 24 / 32

イロト 不聞 と 不良 と 不良 とうほう

$$R_n = 5.647 \pm 0.019$$
 fm
 $\Delta r_{np} = 0.207 \pm 0.021$ fm

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 25 / 32

Results for ⁴⁸Ca, ⁶⁴Ni, ¹²⁴Sn, and ²⁰⁸Pb

Neutron-skin thickness: a compilation

R.H. McCamis et al., PRC 33, 1624 (1984); C.J. Batty et al., Advances in Nuclear Physics, Vol. 19 (1989); E. Friedman, NPA 896, 46 (2012); H.J. Gils et al., PRC 29, 1295 (1984); L. Ray, PRC 19, 1855 (1979); B.C. Clark et al., PRC 67, 054605 (2003); S. Shlomo, Rep. Prog. Phys. 41, 957 (1978); S. Terashima and J. Zenihiro PhD thesis

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 26 / 32

The EoS parameters

The nuclear symmetry energy $E_{sym}(\rho)$ at nuclear density ρ can be expanded around the nuclear matter saturation density ρ_0 as

$$E_{\text{sym}}(\rho) = E_{\text{sym}}(\rho_0) + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{\text{sym}}}{18} \left(\frac{\rho - \rho_0}{\rho_0}\right)^2 \tag{1}$$

where L and ${\rm K_{sym}}$ are the slope and curvature of the nuclear symmetry energy at $\rho_{\rm 0},$ i.e.,

$$L = 3\rho_0 \frac{\partial E_{\text{sym}}(\rho)}{\partial \rho}|_{\rho=\rho_0}$$
(2)

Lie-Wen Chen et al., Phys. Rev. C 72, 064309 (2005).

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 27 / 32

イロト 不得下 イヨト イヨト

~

Constraints of R_n on EoS parameters

FIG. 2. (Color online) Neutron skin thickness *S* of ²⁰⁸Pb as a function of (a) *L*, (b) K_{sym} , and (c) $E_{sym}(\rho_0)$ for 21 sets of Skyrme interaction parameters. The line in panel (a) represents a linear fit.

Lie-Wen Chen et al., PRC 72, 064309 (2005); B. Alex Brown, Phys. PRL 85, 5296 (2000); M. Centelles, et al., PRL 102, 122502 (2009).

D.Y. Pang (Beihang)

CUSTIPEN/PKU

Correlation between Δr_{np} and L

HF calculations with Skyrme parameters

Blue points: 21 sets of parameters used Lie-Wen Chen et al., PRC 72, 064309 (2005);

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 29 / 32

Correlation between Δr_{np} and L

HF calculations with Skyrme parameters

Blue points: 21 sets of parameters used Lie-Wen Chen et al., PRC 72, 064309 (2005); Red points: 13 sets of parameters in P. Klüpfel et al., PRC 79, 034310 (2009);

The correlations seems not depend on the choice of Skyrme parameters.

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014

29 / 32

Δr_{np} constraints on the *L*-value

Constraints on L-value from Δr_{np} of ⁴⁸Ca, ⁶⁴Ni, ¹²⁴Sn and ²⁰⁸Pb

Average Δr_{np} of existing resuls weighted with their error bars

D.Y. Pang (Beihang)

CUSTIPEN/PKU

August 14, 2014 30 / 32

< A

Δr_{np} constraints on the *L*-value

Constraints on *L*-value from Δr_{np} of ⁴⁸Ca, ⁶⁴Ni, ¹²⁴Sn and ²⁰⁸Pb

Average Δr_{np} of existing resuls weighted with their error bars

resuls of the present work

D.Y. Pang (Beihang)

CUSTIPEN/PKU

Summary

Summary

$$\Delta \theta \approx \frac{\pi}{kR_{SA}}$$

- **1** Angular distribution \Leftrightarrow Strong absorption radius R_{SA}
- **2** $R_{SA} \Leftrightarrow$ radius of the optical potential R_U
- **(a)** $R_U \Leftrightarrow$ neutron density distribution ρ_n with systematic folding potential
- $\rho_n \Leftrightarrow$ neutron radius R_n

D.Y. Pang (Beihang)

thanks to

Collaborator: Prof. Jirina Stone

Prof. P.-G. Reinhard for providing the HF code and instructions Prof. LieWen Chen for providing his HF results and Prof. Peter Mohr for providing some elastic α scattering data