Island of Inversion studied by Coulomb and Nuclear Breakup

Takashi Nakamura
中村隆司c.f.
This area is called
中关村Tokyo Institute of Technologyー关村東京工業大学(东京工业大学)

PKU-CUSTIPEN Nuclear Reaction Workshop"Reactions and Spectroscopy of Unstable Nuclei"

Contents

Introduction: Physics Motivation Probe: Coulomb and Nuclear Breakup

Inclusive Coulomb and Nuclear Breakup of ³¹Ne and ³⁷Mg – Deformation Driven 1n-Halo in the island of inversion

-- @ ZDS at RIBF at RIKEN

Evolution Towards the Stability Limit

Where is the neutron drip line? What are characteristic features of drip-line nuclei? How does nuclear structure evolve towards the drip line?

Shell Evolution towards Drip Line in N=21 isotones

Nuclear Breakup of 1n Halo

 \rightarrow e.g. 1n knockout reaction of ³¹Ne

Y ray in coincidence \rightarrow ³⁰Ne(2⁺) / ³⁰Ne(0⁺) Contribution σ_{-1n} and P_{//} distribution \rightarrow *l* of valence n, configuration *Theory: Eikonal Approximation*Talk by Bazin

Inclusive Coulomb/Nuclear Breakup of ³¹Ne and ³⁷Mg

@ ZDS at RIBF, RIKEN

TN, N.Kobayashi et al., PRL 103, 262501 (2009).TN, N.Kobayashi et al., PRL 112, 142501 (2014).N.Kobayashi, TN et al., PRL 112, 252501 (2014).

RIKEN RI Beam Factory (RIBF)

Completed in 2007 SCRIT e-RI scattering with **New-Generation RI-beam facility** 28GHZECRIS (construction) 2013 **SLOWRI** RILACII BFT 2011 Materials RI poduction Biology **SAMURAI** CSM RILAC <u>ZDS</u> 2012 GARIS SLOWRI -(R&D) 2008 RIPS RRC SRC Rare RI PA **RING** -----**BigRIPS** IRC 2014 SHARAQ Space 2007 Return BT 50 m Multi-RI Production 2009 (construction)

SRC: World Largest Cyclotron (K=2500 MeV)

Heavy Ion Beams up to ²³⁸U at 345MeV/u (Light Ions up to 440MeV/u) *eg.* ⁴⁸Ca beam (345 MeV/nucleon) ~200pnA (250pnA max.)

```
<sup>238</sup>U beam (345 MeV/nucleon) ~12pnA (15pnA max.)
```

Experiment at BigRIPS & ZDS at RIBF

Inclusive Coulomb Breakup

c.f. Takechi et al., PLB707,357 (2012)

Semi-inclusive cross sections ${}^{31}Ne \rightarrow {}^{30}Ne(0^{+}_{a.s.})$

Inclusive $\sigma_{-1n}(C) = 90(7)$ mb $\rightarrow \sigma_{-1n}(C; 0^{+}_{a.s.}) = 33(15) \text{ mb}$

Inclusive $\sigma_{-1n}(E1) = 529(63)$ mb $\sigma_{-1n}(C; 2^+, 4^+, \text{ etc.}) = 57(13) \text{ mb}$ $\sigma_{-1n}(E1; 2^+, 4^+, \text{ etc.}) = 81(87) \text{ mb}$ $\rightarrow \sigma_{-1n}(E1; 0_{a.s.}^{+}) = 448(108) \text{ mb}$

 $0^{+}_{q.s.}$ / Inclusive=37(17)%

0⁺_{a.s.} / Inclusive=85(23)%

Different Sensitivity!

Possible configurations

Calculation: Eikonal+Large Scale Shell Model(SDPF-M: sd-p_{3/2}f_{7/2} space)

J ^π (³¹ Ne)		σ _{-1n} (C)	C ² S	$\sigma_{-1n}^{th}(C)$	C^2S^{th}
3/2-	30 Ne(0 $^+_{ m gs}$) \otimes 2p $_{ m 3/2}$ inclusive	33(15) mb 90(7) mb	0.32+0.21 -0.17	24.3 mb 93.3 mb	0.21
172	30 No(0 ⁺) \otimes 2s _{1/2} inclusive	33(15) mb 90(7) mb	0.30 ^{+0.25} -0.17	1.3 mb 51 1 mb	0.01

Partial Cross Sections/ Momentum Distribution (compared to Shell Model) $\rightarrow^{31}Ne_{gs}$: $J^{\pi}=3/2^{-}$, $\sim 30\% \ ^{30}Ne(0^{+}_{gs}) \otimes 2p_{3/2}$, $S_{n}=0.15^{+0.16}_{-0.10MeV}$ \rightarrow Large Configuration Mixing of $p_{3/2}$ and $f_{7/2} \rightarrow ^{31}Ne$ is deformed

Large Scale Shell Model (SDPF-M)

Nilsson Model

3p-2h dominant

 $Q_0 = 60 \text{fm}^2$ B(E2:3/2- \rightarrow 7/2-)=93.2e²fm²

I.Hamamoto PRC 81, 021304(R) (2010) **p becomes more important for smaller s**_n I.Hamamoto PRC 85, 064329 (2012)

Y. Urata, K. Hagino, and H. Sagawa,PRC 83, 041303 (R) (2011).K. Minomo et al, PRL 108, 052503 (2012).

Results and Discussions on ³⁷Mg N=25

Possible configurations

Partial Cross Sections/ Momentum Distribution (compared to Shell Model) $\rightarrow^{37}Mg_{gs}$: $J^{\pi}=3/2^{-}$, $\sim 40\% \ {}^{36}Mg(0^{+}_{gs}) \otimes 2p_{3/2}$, $S_{n}=0.22^{+0.12}_{-0.09MeV}$ (1/2⁻) ${}^{37}Mg$ is also deformed and has a halo configuration !

Shell Evolution in nuclei with N=25

⁴⁵Ca 7/2-, ⁴³Ar(5/2-), ⁴¹S (7/2-), ³⁹Si(?), ³⁷Mg(3/2-,1/2-) pf gap is smaller

Summary and Outlook

Coulomb and Nuclear Breakup around 200 MeV/nucleon Useful tool to probe halo structures

Inclusive Coulomb and Nuclear Breakup of ³¹Ne and ³⁷Mg at ZDS

--- Different Sensitivity to the asymptotic wave function --- Momentum distribution of core fragment in ³¹Ne+C, ³⁷Mg+C $\rightarrow^{31}Ne_{gs}$: J^{π}=3/2⁻, ~30% ³⁰Ne(0⁺_{gs}) \otimes 2p_{3/2} , S_n=0.15^{+0.16}_{-0.10MeV} $\rightarrow^{37}Mg_{gs}$: J^{π}=3/2⁻ (1/2⁻), ~40% ³⁶Mg(0⁺_{gs}) \otimes 2p_{3/2} , S_n=0.22^{+0.12}_{-0.09MeV}

³⁷Mg: Heaviest nucleus with halo so far confirmed \rightarrow Deformed-driven Halo Configuration in ³¹Ne and ³⁷Mg

Outlook: Inclusive→Exclusive

Invariant mass spectroscopy \rightarrow Level Structures of ³¹Ne –rotational band? \rightarrow SAMURAI Proposal approved (Spokesperson: N.Kobayashi)

²²C, ¹⁹B Coulomb Breakup (invariant mass) Done: Analysis is in progress:

Halo Nuclei in heavier drip-line nuclei?

Inclusive Coulomb and Nuclear Breakup of ³¹Ne and ³⁷Mg

PRL 112, 142501 (2014).

Deformation-driven *p*-wave Halos at the Drip-line: ³¹Ne 小林信之

T. Nakamura,¹ N. Kobavashi,¹ Y. Kondo,¹ Y. Satou,^{1,2} J.A. Tostevin,³ Y. Utsuno,⁴ N. Aoi,⁵ H. Baba,⁵ N. Fukuda,⁵ J. Gibelin,⁶ N. Inabe,⁵ M. Ishihara,⁵ D. Kameda,⁵ T. Kubo,⁵
T. Motobayashi,⁵ T. Ohnishi,⁵ N.A. Orr,⁶ H. Otsu,⁵ T. Otsuka,⁷ H. Sakurai,⁵ T. Sumikama,⁸ H. Takeda,⁵ E. Takeshita,⁵ M. Takechi,⁵ S. Takeuchi,⁵ Y. Togano,^{5,1} and K. Yoneda⁵
¹Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
²Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

⁴Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
 ⁵RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
 ⁶LPC-ENSICAEN, IN2P3-CNRS et Université de Caen, F-14050, Caen Cedex, France
 ⁷Center for Nuclear Study (CNS), the University of Tokyo, Hongo, Tokyo 113-0033, Japan
 ⁸Department of physics. Tokyo University of Science, Chiba 278-8510, Japan

PRL 112, 252501 (2014).

Observation of a p-wave one-neutron halo configuration in ${}^{37}Mg$

N. Kobavashi,^{1,*} T. Nakamura,¹ Y. Kondo,¹ J. A. Tostevin,^{2,1} Y. Utsuno,³ N. Aoi,^{4,†} H. Baba,⁴ R. Barthelemy,⁵ M. A. Famiano,⁵ N. Fukuda,⁴ N. Inabe,⁴ M. Ishihara,⁴ R. Kanungo,⁶ S. Kim,⁷ T. Kubo,⁴ G. S. Lee,¹ H. S. Lee,⁷ M. Matsushita,^{4,‡} T. Motobayashi,⁴ T. Ohnishi,⁴ N. A. Orr,⁸ H. Otsu,⁴ T. Otsuka,⁹ T. Sako,¹ H. Sakurai,⁴ Y. Satou,⁷ T. Sumikama,^{10,§} H. Takeda,⁴ S. Takeuchi,⁴ R. Tanaka,¹ Y. Togano,^{4,¶} and K. Yoneda⁴

Backup

Definition of Island of Inversion

E.K. Warburton, J.A.Becker, B.A.Brown, PRC41, 1147 (1990).

Further evidence for the presence of an anomaly in binding energies for the "island of inversion" centered at Z = 11, N = 21 is obtained by comparison of shell-model calculations to experiment.

...

It is found that for Z = 10-12, N = 20-22 (and possibly N > 22) nuclei the lowest $2\hbar\omega$ state is more bound than the $0\hbar\omega$ ground state.

Island of Inversion: $E(0\hbar\omega)>E(2\hbar\omega)$

Naively: $2\hbar\omega + E_{res} < 0$

Shell Evolution in nuclei with Z=12 (Mg isotopes)

Large Scale Shell Model (SDPF-M+p_{1/2})

--- could explain -1n inclusive/partial cross sections/momentum distribution

What drives the deformation near Z=10~12, N=20~26?

 $f_{7/2}$ -p_{3/2} degeneracy

Jahn-Teller Effect

1. Weakly bound orbits in mean field $\rightarrow f_{7/2}$ -p_{3/2} degeneracy \rightarrow Deformation?

I.Hamamoto PRC85, 064329 (2012).

(MeV)

ω

What drives the deformation near Z=10~12, N=20~26?

2. Migration of Effective Single-particle Energy \leftarrow T=0 Monopole interaction $\rightarrow f_{7/2}p_{3/2}$ degeneracy (reduced gap of fp-sd) \rightarrow Deformation (for N~20: Equivalent to $2\hbar\omega$ dominance)

Inclusive $\sigma_{-1n}(C) = 80(4) \text{ mb}$ $\sigma_{-1n}(C; 2^+, 4^+, \text{ etc.}) = 42(7) \text{ mb}$ $\rightarrow \sigma_{-1n}(C; 0^+_{q.s.}) = 38(8) \text{ mb}$ Inclusive $\sigma_{-1n}(E1) = 490(50) \text{ mb}$ $\sigma_{-1n}(E1; 2^+, 4^+, \text{ etc.}) = 40(60) \text{ mb}$ $\rightarrow \sigma_{-1n}(E1; 0^+_{g.s.}) = 450(80) \text{ mb}$

0⁺_{g.s.} / Inclusive=48(10)%

0⁺_{g.s.} / Inclusive=92(19)%