Recent Experiments on Nucleon Correlation Studies using Knockout and Transfer Reactions

Jenny Lee

Radioactive Isotope Physics Laboratory

RIKEN Nishina Center for Accelerator-Based Science, Japan

Department of Physics, The University of Hong Kong

PKU-CUSTIPEN Aug 10-14, 2014

Hong Kong

Nuclear Physics Group at The University of Hong Kong

HKU Group Members: Zhengyu Xu (Postdoc) Jiajian Liu (PhD student) Taras Lokotko (PhD student)

- Direct Reactions for Nucleon Correlations
- In-beam gamma Spectroscopy for Shell Evolutions
 60 NaI Detectors → DALI2 Upgrade @ RIKEN
- Beta-decay Spectroscopy for Shell Evolutions

Upcoming Experiments

- I) Asymmetry Dependence of Nucleon Correlations Transfer reactions of ^{34,46}Ar at 70 MeV/u National Superconducting Cyclotrons Laboratory, Michigan State University, United States (Dec 2014)
- **II) Alpha-cluster and Multi-neutrons in ¹⁴Be Quasi-free scattering reactions of ¹⁴Be at 250 AMeV RIBF Nishina Center, RIKEN, Japan**

T. Lokotko, PhD thesis (Co-supervisor: Didier Beaumel)

III) Structure of ⁵⁶Ca and Magicity of ⁵⁴Ca In-beam gamma spectroscopy of ^{53,56}Ca at 250 AMeV RIBF Nishina Center, RIKEN, Japan

J. Liu, PhD thesis

Asymmetry Dependence of Nucleon Correlations

• Asymmetry Dependence of Nucleon Correlations by Single-nucleon Knockout of ³⁰Ne at 250 MeV/u (RIKEN) *papers in preparation*

• Benchmark Reaction Mechanisms by Knockout of ¹⁴O at 60 MeV/u (RCNP, Osaka University)

Analyzed by Y. Sun (PKU), Ph.D thesis

Neutron-Proton Correlations

• Neutron-proton Pairing by Systematic Pair-nucleon Transfer Reactions of *sd*-shell Nuclei (RCNP) *Analyzed by Y. Ayyad (RCNP)*

• Neutron-Proton Correlations by first Exclusive pair-nucleon Knockout of ¹²C at 200 MeV/u (RIKEN) *Analyzed by H. Liu (PKU/RIKEN)*, *Ph.D thesis*

Nucleon Correlations

Probing the nuclear wave function

Removing nucleon from occupied orbital → *Cross sections (probability)* depend on the single-particle occupancy & overlap of many-body wave functions

Spectroscopic Factor (SF)

Cross Sections + Reaction Model

→ Spectroscopic Factors (expt) Quantify Occupancy → Correlation Effects

How much ? What is the Isospin Dependence of nucleon correlations? How good the effective interaction in Shell Model can describe the correlations ?

SM description is accurate

Some correlations missing in the interactions ?

(e,e'p) – Stable nuclei (near closed shell)

- <u>Constant</u>~30-40% of SF reduction compared to theory
- Correlations missing in interactions used in SM
 - L. Lapikas, Nucl. Phys. A553, 297c (1993)

Extend SF measurements to Exotic Nuclei !

Isospin Dependence of Shell Occupancies?

Q: Isospin Dependence ?

Knockout reactions: Yes & Strong

^{32,34,46}Ar(⁹Be,X) at ~ 70 A MeV

A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004) Phys. Rev. C 77, 044306 (2008) & reference therein

Transfer reactions: Weak

p(^{34,36,46}Ar,d) at 33 A MeV

J. Lee et al., Phys. Rev. Lett 104, 112701 (2010) Phys. Rev. C 83, 014606 (2011)

Systematic difference between two probes !

Incompatibility → Incomplete understanding in underlying reaction mechanism

<u>Transfer Reaction</u> ✓ NSCL: ^{34,46}Ar(p,d) at 70 A MeV - same energy as knockout reactions for direct comparison

Transfer Reactions for Correlation Studies

Isospin Dependence of Shell Occupancies?

Q: Isospin Dependence ?

Knockout reactions: Yes & Strong

 $^{32,34,46}Ar(^{9}Be, X)$ at ~ 70 A MeV

A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004) Phys. Rev. C 77, 044306 (2008) & reference therein

Transfer reactions: Weak

p(^{34,36,46}Ar,d) at 33 A MeV

J. Lee et al., Phys. Rev. Lett 104, 112701 (2010) Phys. Rev. C 83, 014606 (2011)

Systematic difference between two probes !

Incompatibility → Incomplete understanding in underlying reaction mechanism

<u>Transfer Reaction</u> ✓ NSCL: ^{34,46}Ar(p,d) at 70 A MeV - same energy as knockout reactions for direct comparison

Knockout Reaction ?

Knockout Reaction Mechanism

NSCL, MSU - ¹⁴O knockout at 60 MeV/A F. Flavigny *et al.*, Phys. Rev. Lett. 108, 252501 (2012)

Reaction Theory: Eikonal & Sudden Approximations

J. Tostevin et al., J. Phys. G, Part. Phys. 25, 735 (1999)

<u>1. Reaction energy high enough ?</u>

✓ Data at energies of 200-300 AMeV

Spectroscopic information towards "Island of Inversion" using knockout reaction with in-beam gamma technique

Energy Dependence ?

Knockout Reaction Mechanism

NSCL, MSU - ¹⁴O knockout at 60 MeV/A F. Flavigny , A. Obertelli *et al.*, Phys. Rev. Lett. 108, 252501 (2012)

GANIL E569S – SPIRAL d(¹⁴O,t) ¹³O at 18 A MeV F. Flavigny, A. Obertelli *et al.* Phys. Rev. Lett. 110, 122503 (2013)

2. Inert-core ?

C. Louchart, A. Obertelli et al., Phys. Rev. C 83, 011601 (R) (2011) Intranuclear Cascade Model (*INC*)

Proj.		ℓj	C^2S	σ_{exp} (mb)	$\sigma_{\rm casc}$	σ_{evap} (mb)	σ	σ _{eik} (mb)	δ
¹⁴ 0	-n	P _{3/2}	3.7	13.4 ± 1.4	11.6	4.2	15.8	50	0.3
	-p	$P_{1/2}$	1.8	67 ± 6	22.5	31.4	53.9	41.2	1.3

INC: Significant core-excitation process depletes the one-neutron removal channel

Understanding the knockout reaction mechanism needed !

Study of Reaction Mechanism

Fully Exclusive Measurements of reaction products

Hodoscope and Tube Chamber

T. Motobayashi & Rikkyo University group

42 Scintillators (1-meter long)
3 layers (active area of 1x1 m²)
ΔE : 5 mm thick (13 bars)
E1, E2: 60 mm thick

Between Target to Hodoscope: 3.6 meters in vacuum → Position, Timing Eenergy resolution

Hodoscope Acceptance: 0°-7°

Data in Analysis Y. Sun (PKU), Ph.D Thesis

Asymmetry Dependence of Nucleon Correlations

• Asymmetry Dependence of Nucleon Correlations by Single-nucleon Knockout of ³⁰Ne at 250 MeV/u (RIKEN) *papers in preparation*

• Benchmark Reaction Mechanisms by Knockout of ¹⁴O at 60 MeV/u (RCNP, Osaka University)

Analyzed by Y. Sun (PKU), Ph.D thesis

Neutron-Proton Correlations

• Neutron-proton Pairing by Systematic Pair-nucleon Transfer Reactions of *sd*-shell Nuclei (RCNP) *Analyzed by Y. Ayyad (RCNP)*

• Neutron-Proton Correlations by first Exclusive pair-nucleon Knockout of ¹²C at 200 MeV/u (RIKEN) *Analyzed by H. Liu (PKU/RIKEN)*, *Ph.D thesis*

Neutron-Proton Pair Correlations

Long-standing open fundamental questions:

• Nature of T=0 pair in nuclear medium ?

• Mutual Strength & Interplay of T=0 and T=1 *np*, *nn*, *pp* pairs ?

• Does T=0 pairing give rise to collective modes ?

Two-nucleon Transfer Reactions

PRL 94, 162502 (2005)

PHYSICAL REVIEW LETTERS

week ending 29 APRIL 2005

Deuteron Transfer in N = Z Nuclei

P. Van Isacker,¹ D. D. Warner,² and A. Frank³

 ¹Grand Accélérateur National d'Ions Lourds, B.P. 55027, F-14076 Caen Cedex 5, France
 ²CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
 ³Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70-543, 04510 México, D.F. Mexico (Received 14 September 2004; published 29 April 2005)

Interacting Boson Model (IBM-4)

TABLE I. Predicted deuteron-transfer intensities C_T^2 between even-even (EE) and odd-odd (OO) N = Z nuclei in the SU(4) (b/a = 0) and $U_T(3) \otimes U_S(3)$ $(|b/a| \gg 1)$ limits.

	Limit	Reaction	$C_{T=0}^{2}$	$C_{T=1}^{2}$				
	b/a = 0	$EE \rightarrow OO_{T=0}$	$\frac{1}{2}(N_{\rm b}+6)$	0				
		$EE \rightarrow OO_{T=1}$	0	$\frac{1}{2}(N_{\rm b}+6)$				
		$OO_{T=0} \rightarrow EE$	$\frac{1}{2}(N_{\rm b}+1)$	0				
		$OO_{T=1} \rightarrow EE$	0	$\frac{1}{2}(N_{\rm b}+1)$				
	$b/a \ll -1$	$EE \rightarrow OO_{T=0}$	$N_{\rm b} + 3$	0				
T=0 s	stronger	$EE \rightarrow OO_{T=1}$	0	3				
	stronger	$OO_{T=0} \rightarrow EE$	$N_{\rm b} + 1$	0				
	$b/a \gg +1$	$EE \rightarrow OO_{T=0}$	3	0				
T 1		$EE \rightarrow OO_{T=1}$	0	$N_{\rm b} + 3$				
<i>T=1</i>	stronger	$OO_{T=1} \rightarrow EE$	0	$N_{\rm b} + 1$				

T=0 (T=1) pairing: enhanced transfer probabilities $0^+ \rightarrow 1^+ (0^+ \rightarrow 0^+)$ levels

Measure the np transfer cross section to T=1 and T=0 states Absolute $\sigma(T=1)$ and $\sigma(T=0)$ – character and strength of the correlations $\sigma(T=1) / \sigma(T=0)$ – interplay of T=1 and T=0 pairing modes

Systematic studies of neutron-proton pairing in *sd*-shell nuclei using $(p, {}^{3}He)$ and $({}^{3}He, p)$ transfer reactions

RCNP
 大阪大学 核物理研究センター

³He beam at 25 MeV ²⁴Mg(³He,p), ³²S(³He,p)

Proton beam at 65 MeV

²⁴Mg(p,³He),²⁸Si(p,³He),⁴⁰Ca(p,³He)

also 2n-transfer and 1n-transfer data

Grand Raiden \rightarrow recoil particle

LAS \rightarrow elastic scattering reaction (beam normalization & target thickness measurement)

65 MeV proton / 25 MeV ³He beams from injector AVF cyclotron (bypass Ring-Cyclotron)

Systematic studies of neutron-proton pairing in *sd*-shell nuclei using (*p*,³*He*) and (³*He*,*p*) transfer reactions

 ^{24}Mg (³He,p) at 25MeV

Data Analysis by Y. Ayyad (RCNP)

Reaction Model (G. Potel (MSU)):

Calc. of absolute (p,t) cross sections achieved:

- Proper pairing interaction
- Multistep (successive, simultaneous)

G. Potel et al., Phys. Rev. Lett 107, 092501

Extend to np-transfer with T=0 pairing included

"Unusual" neutron-proton Correlations in ¹²C

First final-state-exclusive np knockout data

First final-state-exclusive *np* knockout data *np*-Correlations & 3-body Force

No-core shell model (NCSM) *ab initio* calculations (including realistic 2-body interaction and 3-body forces)

E. C. Simpson, P. Navrátil, R. Roth, and J. A. Tostevin et. al., PRC 86, 054609(2012)

First final-state-exclusive np knockout data

"Unusual" neutron-proton Correlations in ¹²C

J.M. Kidd et al., PRC 37, 2613 (1988): Ratio: ~ 6 (250AMeV) D.L. Olsonet al., PRC 28 ,1062 (1983): Ratio: ~ 4 (2.1 GeV)

Ratio is Energy Dependent!

Higher energy → Pick-up Pairs with higher relative momentum

Behavior of T=0 *np***-correlations: function of pair relative momentum !**

Larger $\Delta P \rightarrow \text{Smaller } \Delta x$

Properties of Tensor Interaction at Different Ranges Determined

Unified Probe to Cover the Entire Ranges

How about using proton beam ? ¹²C(*p*,*ppN*)

A variety of incident energies (MeV-GeV) Simple Measurement → Direct and Clear Probe to SRC Larger Production Yield → More Statistics Future: Proton Target & Radioactive Beam

Experimental Program: ¹²C ,⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb, d (800 MeV – 2.8 GeV)

Summary I

Asymmetry Dependence of Nucleon Correlations

RIKEN RIBF31 Collaborators:

One Nucleon Konckout Reaction on ³⁰Ne

RIKEN H. Liu, J. Lee, P. Doornenbal, H. Scheit, S. Takeuchi, N. Aoi, K. Li, M. Matsushita1, D. Steppenbeck1, H. Wang, H. Baba, E. Ideguchi,, T.Motobayashi, H. Sakurai, M. Takechi, Y. Togano

Tokyo Tech.

Y. Kondo, N. Kobayashi

CNS/ Unvi. Of Tokyo S. Michimasa

Theory Collaboration:

RCNP/Osaka University K. Minomo, K, Ogata ◆ RCNP 大阪大学 核物理研究センター

JAEA Y. Utsuno

Hokkaido University M. Kimura

Univ. of Surrey J. A. Tostevin, E.C. Simpson

RCNP E390 Collaborators:

Understanding Nucleon Stripping Reaction Mechanisms from Exotic Nuclei at Intermediate Energy

RIKEN J. Lee, H . Liu, G. Lorusso, S. Nishimura, S. Takeuchi, J. Wu, Z. Xu

Peking University

Y. Ye, J. Chen, Y. Ge, Z. Li, J. Lou, R. Qiao, Y. Sun

RCNP

N. Aoi, Y. Ayyad, T. Hashimoto, E. Ideguchi, H.J. Ong, J. Tanaka, M. Tanaka, T. Trong, H. Suzuki, T. Yamamoto

Dep. Of Physics, Kyoto Univ. T. Kawabata, T. Furono

INFN, Italy F. Cappuzzello, M. Cavallaro

INFN Istituto Nazionale di Fisica Nucleare

京都大学

Theoretical Group C. Bertulani (Texas), R. Crespo (Lisboa), K. Ogata (RCNP)

CEA Saclay, France

A. Obertelli

energie atomique - energies alternatives

Summary II

N=Z nuclei in sd-shell

Systematic studies of neutron-proton pairing in *sd*-shell nuclei using $(p, {}^{3}He)$ and $({}^{3}He, p)$ transfer reactions

RIKEN J. Lee, Z, Li, H. Liu, J. Zenihiro

LLNL I. J. Thompson

LBNL A.O. Macchiavelli, P. Fallon

IPN Orsay D. Beaumel

RCNP, Osaka U.

- N. Aoi
- Y. Fujita,

K. Miki

T. Suzuki. A. Tamii.

Y. Ayyad K. Hatanaka, H. J. Ong,

RCNP 反大学 核物理研究センタ-

Theory Collaboration: A. Brown, G. Potel

CNS, Univ. of Tokyo H. Matsubara

H. Fujita

Dep. Phys., Osaka Univ.

Dep. Of Physics, Kyoto Univ. T. Kawabata, N. Yokota

Science Faculty, Istanbul Univ. E. Ganioglu, G. Susoy

RIKEN NP1206-SAMURAI10 Collaborators:

Study of Neutron-Proton Correlation & 3N-Force in N=Z nuclei

RIKEN J. Lee, H. Liu, P. Doornenbal, N. Inabe, T. Isobe, T. kubo,

S. Kubono, T. Motobayashi, M. Nishimura, H. Otsu, H. Sakurai, H. Sato,

Y. Shimizu, S. Takeuchi, H. Wang, K. Yoneda

Tokyo Tech. Y. Kondo, T. Nakamura, S. Nishi, R. Tanaka

RCNP, Osaka U. N. Aoi

東京工業大学

LBNL A.O. Macchiavelli, P. Fallon

CNS/ Unvi. Of Tokyo M. Matsushita, D. Steppenbeck

Tohoku Univ.

T. Kobayashi

Theory Collaboration:

Univ. of Surrey J. A. Tostevin, E.C. Simpson

TRIUMF P. Navratil

NSCL/MSU B.A. Brown

東北大学

Univ. of Kyoto Y. Matsuda

