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TDHF theory: historical remarks

e Method was first applied by Bonche, Koonin, and Negele,
fusion excitation function, fission, deep-inelastic collisions,
nuclear molecules, collective excitation and resonance dynamics

PHYSICAL REVIEW C VOLUME 13, NUMBER 3 MARCH 1976

One-dimensional nuclear dynamics in the time-dependent Hartree-Fock approximation*
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giant resonance = RPA fusion deep inelastic collision
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TDHF theory: historical remarks

® many groups in the late ‘70s and ‘80s performed more
extensive calculations in 2 and 3 dimensions, limited by the
computers of the time, e.g.,

K. T. R. Davies, V. Maruhn-Rezvani, K. R. Sandhya-Deuvi,
S. J. Krieger, J. A. Maruhn

R.Y. Cusson, H. St&ker, J. A. Maruhn
H. Flocard, M. S. Weiss

most calculation in 2D axial geometry,
no I*s-force (essential for correct shell structure)

J

hindrance
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The conflict between TDHF prediction and experimental data promotes the theoretical development

puzzle of small fusion window

PHYSICAL REVIEW C VOLUME 24, NUMBER 1 JULY 1981
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Search for a fusion L window in the 'O + 'O system at E_.,, — 34 MeV

A. Lazzarini, H. Doubre.* K. T. Lesko, V. Metag,' A. Seamster, R. Vandenbosch, and W. Merryfield
Nuclear Physics Laborarory, University of Washingron, Seartle, Washington 98195
(Received 17 February 1981)

|GO{IGO, |6O*) |60*' Ecm.: 34 MeV

We have measured the inelastic scattering c

The inelastic yield is dominated by single and 14 T T T T T I . T -
6.1 =FE_="7.1 MeV in 1%0. The yield for ene 3
significantly less than time-dependent Hartree (a) 10 IS (b) —:
nonfusion for low partial waves is predicted. 12 q ] r ]
= - e Q< -15.0MeV -
NUCLEAR REACTIONS '90(!1¢0, 160") §IO-— ] E - 0 Q< -200Mev4
E_=0—20 MeV, inelasti o B
x elastic -_E, sl . 5} . .
—.—
Time-dependent Hartree-Fock (TDHF) calcula- 3102:‘ e o
tions! ™5 indicate that the collision between two heavy w 6 4 A C 3
ions does not lead to compound nucleus formation R % " 3
for the smallest impact parameters if the center of b B —— O, N
mass energy is sufficiently high. The reaction © 4 -1 \? | —o0 .
proceeds instead to a two-body final state with a total —- o=
kinetic energy determined by the Coulomb barrier for B T
the two ions. Unlike symmetric fission, the angular 2 ]
distribution does not increase towards smaller scatter- 1O + —
ing angles. o T T P . L A
TDHF calculations by Koonin and Flanders® 30 20 10 o) 40 80 120
predict that for the '°*0O + %0 reaction at E£.,, = 34 -Q (MeV) g (degrees)
MeV the partial waves L. = 6 do not lead to fusion. c.m.
The corresponding deep inelastic cross section is ex- FIG. 2. (a) A projection of the Wilczynski plot onto the
GEEIEREE EB (SS@EE Recent publications by Dhar TKE axis. (b) Angular distributions for selected Q-value
and Nilsson” and also’ by Walschin® point Cf‘n that the ranges. The points represent averages over 10° intervals in
occurrence of nonfusion at lower bombarding ener-
the center of mass.
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Spin-orbit coupling solved puzzle of small fusion window

A. S. Umar, M. R. Strayer, and P.-G. Reinhard, Phys. Rev. Lett 56, 2793 (1986).

TABLE 1. Thresholds for the inelastic scattering of '°O
+ 190 system.

Skyrme II Skyrme M*
Force (MeV) (MeV)
Spin orbit 68 70
No spin orbit 31 27

TABLE 1I. Total fusion cross sections for the 'O+ !0
system for different parametrizations of the Skyrme force
with and without spin-orbit part. The last row shows the
corresponding experimental cross section from Ref. 20.

E..,=20 MeV E.. =34 MeV

Force {mb) (mb)

i1 1315 ~0

[T+ LS 1466 1694

M* 1389 ~0

M*+ LS 1460 1822
Bonche-Koonin-Negele 912 794
Expt. 850 1075

Include time-even spin-oribt force

Eva MeV]

100
80— 150 + %0 cenfral SkM®
60— NoLS
4_0_

20 SKl

0
o 50 100 170
Ee[MeV]

Omission of I*s-coupling underestimated the energy dissipation so that the energy
window of fusion reactions was too small in comparison with experiments.
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Fusion window problem revisited

M. Tohyama and A. S. Umar, Phys. Rev. C65, 037601 (2002).

TABLE I. Threshold energy £}, in the center-of-mass frame for
the head-on collisions of '°O+ '°O. Fusion occurs below E, .

Method Ey (MeV)
TDHF without 7-s 30
TDDM without /- s 66
TDHF with /- s 69
TDDM with /- s 80

TDDM: time-dependent density matrix theory includes both one- and two-body collisions

O The I*s force has significant effect on the collision dynamics;
O The role of I*s force can be compensated by two-body collisions when I*s is absent;
O The increase in E,, remains small due to two-body collisions when spin-orbit force

was already included,;
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TDHF theory: advantages vs. limitations

Advantages

» Fully microscopic, parameter-free theory in heavy-ion collisions;

» Treat nuclear structure and reactions in a unified framework (same EDF);

» Dynamical effects in heavy-ion collisions (neck formation, deformation,
surface vibrations, nucleon exchange) are automatically incorporated;

» Quantum effects ( pauli principle, antisymmetrization of wavefunction,

spin-orbit force) are treated in a quantum mechanical way;

Limitations

» Only one-body dissipation (collision with walls of mean-field);
» Tunneling effect is missing;
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Effect of spin-orbit force on dissipation dynamics
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P.-G. Reinhard et. al., Phys.
Rev. C 37, 1026 (1988).

the difference
< I*s force

7 | < symmetry restrictions

< gradient of density
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Gao-Feng Dai, Lu Guo, En-Guang Zhao, and Shan-Gui Zhou, Phys. Rev. C (submitted)
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Effect of spin-orbit force on dissipation dynamics
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O The I*s force causes a significant enhancement of the dissipation;
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O The energy dissipation decrease as c.m. energy increases owing to the

competition of collective motion and single-particle degrees of freedom;
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Effect of spin-orbit force on dissipation dynamics
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The time-even coupling of spin-orbit force plays a dominant role at low energies,

while the influence of time-odd terms is notable at high energies.
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Effect of spin-orbit force on dissipation dynamics
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Around 40%~65% of the energy dissipation depending on the different Skyrme

parameters is found to arise from the spin-orbit force in deep-inelastic collisions.
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Effect of spin-orbit force on dissipation dynamics

TABLE I. Calculations of fusion cross section for "*O-+'%0 at

Eem. = 70.5 MeV with three Skyrme parametrizations and
experimental data with errors [70].

Force Orus (D)
STy4 1282
SkM* 1287
UNEDF1 1327
Exp. 1056 + 125

TDHF calculations overestimated the experimental data by about 20%;

reasonably reproduced the experimental data, considering that no free-

parameters are fitted to the reaction dynamics.
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Effect of tensor force on dissipation dynamics

Pas (o)

1 1 I I I I I
90 | - 1
t 2 2
| H =go (I +3;) + B3 - T,
80 -
70 -
60 - a = e + oy, B = Be+ By,
50 | . \ /
40 | | Force ar Br ac Be @ B
i | sLys 0.0 0.0 80.2 —48.9 80.2 —48.9
30 1 . 1 . L . L . 1 . L . ! SLy5+T —170.0 100.0 80.2 —48.9 —89.8 51.1
80 100 120 140 160 180 200 T11 ~1428  —175 82.8 —425 =600  —60.0
E.. (MeV) T13 -21.6 —15.1 81.6 —449 60.0 —60.0
T31 ~159.4 74.2 99.4 —142 —60.0 60.0
T33 —40.8 71.1 100.8  —11.1 60.0 60.0

For the reaction systems with N=Z,

O The tensor dependence of energy dissipation is attributed to the parameters |a +p|;
O With the small |a+[]|, the small effect of tensor force on the dissipation, as SLy5+T, T13, T31,

O The large value of |a +[]| gives rise to the strong effect on the dissipation as T11 and T33;
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Effect of tensor force on dissipation dynamics

The theoretical fusion cross section
with T11 tensor force well reproduce

experimental data

Force T fus (MDb)
SLy5 1307
SLy5+T 1327
TI1 1161
T13 1265
T31 1326
T33 1327
Exp. 1056 + 125
Force ar Br ac Bc o B
SLy5 0.0 0.0 80.2 —48.9 80.2 —48.9
SLy5+T —170.0 100.0 80.2 —48.9 —89.8 51.1
T11 —142.8 —17.5 82.8 —42.5 —60.0 —60.0
T13 —21.6 —15.1 81.6 —44.9 60.0 —60.0
T31 —159.4 74.2 99.4 —14.2 —60.0 60.0
T33 —40.8 71.1 100.8 —11.1 60.0 60.0
2014-8-14
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Summary and outlook

Summary
O Three-dimensional TDHF with full Skyrme functional and without any symmetry restrictions;
O The dissipation decreases as the c.m. energy increases owing to the competation of
collective motion and single —particle degrees of freedom;
O The spin-orbit force causes a significant enhancement of the dissipation;
O The time-even coupling of I*s force plays a dominant role at low energies, while
the influence of time-odd termsis notable at high energies;
O The tensor force may either enhance or reduce the dissipation depending on different parameter

O The theoretical fusion cross section reasonable reproduced the experimental data;

Outlook

» The dissipation dynamics in heavier systems;

» The fusion excitation function with tensor force in heavier, asymmetric and exotic systems;
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