KNOCKOUT REACTIONS: A TOOL FOR SPECTROSCOPY OF EXOTIC NUCLEI D. Bazin National Superconducting Cyclotron Laboratory Michigan State University

- One observable, two models
- Extract valuable structure information
- Need accurate reaction model!

Outline

- Knockout reactions under the microscope
- Precision test of reaction model using exclusive experiment
- Validate the concepts used in the theory
- Case for using this type of reaction as spectroscopy tool

Outline

- Knockout reactions under the microscope
- Precision test of reaction model using exclusive experiment
- Validate the concepts used in the theory
- Case for using this type of reaction as spectroscopy tool
- Nuclear structure under the microscope
 - Test ab-initio nuclear structure models on p-shell nuclei
 - Emergence of nuclear structure models from first principles
 - Knockout reactions offer unique tool to probe these models

Knockout reactions

- Sudden removal of one or two nucleons from a projectile via nuclear interaction with a light target
 - Direct (one-step) peripheral reaction
 - High energy: sudden approximation + eikonal model
 - Recoil momentum of residue equivalent to that of removed nucleon(s)

P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003)

Experimental Assets

- High luminosity for inverse kinematics
- Inclusive measurement: thick targets
- Fast beams: focusing of projectile residues in small solid angle
- High efficiency γ-ray array: CsI(Na) or γ-tracking Ge
- Measurements possible down to ~ 1 projectile/second
- Very well suited to rare isotope beams produced via projectile fragmentation
- High physics output
 - Single-particle components of projectile wave function

Level scheme of residual nucleus (hole states)

Theoretical Assets

- Simple Glauber-type eikonal reaction model
 - Stripping: inelastic breakup
 - Diffraction: elastic breakup
 - Cross section independent of removed nucleon binding

Does this model reflects reality?

$$\sigma_{sp} = \sigma_{str} + \sigma_{dif} + \sigma_{C}$$

$$\sigma_{str} = \frac{1}{2j+1} \int d\vec{b} \sum_{m} \langle \psi_{jm} | (1 - |S_{n}|^{2}) | S_{c} |^{2} | \psi_{jm} \rangle$$

$$\sigma_{dif} = \frac{1}{2j+1} \int d\vec{b} [\sum_{m} \langle \psi_{jm} | |1 - S_{n}S_{c} |^{2} | \psi_{jm} \rangle - \sum_{m,m'} | \langle \psi_{jm'} | (1 - S_{n}S_{c}) | \psi_{jm} \rangle |^{2}]$$

$$J. A. Tostevin, Nucl. Phys. A 682, 320c (2001)$$

Surface localization of reaction

Part of the WF probed by the knockout mechanism

- Case shown: 2p knockout from ²⁸Mg on ⁹Be target
- Spectroscopic
 sensitivity near surface
 and non-asymptotic
- Eikonal model uses descriptions of size and surface behavior of single-particle orbitals

Exclusive experiment

- Experiment aimed to measure stripping and diffraction parts of the cross section separately
- Detect removed nucleon with maximum solid angle

- One-proton knockout: easier to detect proton than neutron
- Choose two cases with different binding energies and only one or two final states

Initial state	Final state	S	σ	σ	σ	S	%
9	8	1.296	44.57	15.27	1.1	0.94	26.8
8	7	0.137	64.42	31.65	7.7	1.036	27.1
8	7	0.566	57.34	24.44	3.4	0.22	37.1
D. Bazin <i>et al.</i> , Phys. Rev. Lett. 102 , 232501 (2009)					MICHICA U N T V E F		

Experimental Setup

S800 spectrograph to measure projectile residue

HiRA telescope array to measure knocked out proton

Incoming ⁹C cocktail beam

Focal plane detectors Particle identification Scattering angle and energy of residual nucleus

> Scattering chamber 188 mg/cm² ⁹Be target HiRA detector array

Acceptances

- 5% momentum
- 20 msr solid angle $(\pm 3.5^{\circ} \times \pm 5^{\circ})$

High Resolution Array HiRA

- Up to 20 telescopes
- Angular coverage 9° to 54°
- Energy, identification of p,d,t...

Proton coincidences

- Evidence for elastic breakup reaction mechanism
- Diagonal "band" corresponds to elastic process where energy is conserved
- For other events proton interacts inelastically with target

Deuteron coincidences

Must come from stripping events

- Additional neutron in deuteron comes from (p,d) on ⁹Be target
- Diagonal "band" previously observed in proton coincidences has disappeared

Energy sum spectra

- Sharp peak corresponds to elastic breakup
- Double gaussian fit to determine elastic cross sectio
- Deduce elastic breakup distributions by subtraction

Very good agreement!

Proj.	% (model)	% (exp.)	
9	26.8	25(2)	
8	37.1	38(3)	

Two-proton knockout exclusive experiment

- Performed with the same setup on ${}^{28}Mg-2p \rightarrow {}^{26}Ne$
- 26Ne + p + p triple coincidences missing mass $\rightarrow \sigma_{dd}$
- ► 26Ne + p + x triple coincidences missing mass → σ_{sd}/σ_{ss}

	diff	diff-str	str	tot
$\sigma_{\rm obs}$ (mb)	0.07(2)	0.27(14)	0.54(14)	0.88(2)
$\sigma_{\rm extr} \ ({\rm mb})$	0.11(3)	0.44(23)	0.87(23)	1.43(5)
fraction (%)	8(2)	31(16)	61(16)	
$\sigma^{\rm inc}$ (mb)				1.475(18)
σ_{theo} incl. (mb)	0.19	1.13	1.70	3.02
$\sigma_{\text{theo}} R_{\text{S}}(2\text{N}) \text{ (mb)}$	0.09	0.55	0.83	1.475
fraction _{theo} (%)	6.3	37.4	56.3	

K. Wimmer et al., Phys. Rev. C 85, 051603(R) (2012)

Two-proton correlations

How are the two protons removed from the projectile?

Dalitz plots: W_{pp} (proton-proton) versus W_{cp} (core-proton)

NSF MICHICAN'STATE UNIVERSITY

Spatially-correlated pair removal

- Two-step process
 excluded energetically
- Fit of experimental Dalitz plot give fraction of twobody 0.56(12)
- Significant surface
 localization and spatial
 proximity of the two
 protons

K. Wimmer et al., PRC 109, 202505 (2012)

Diffraction of deeply-bound valence proton

- One-proton knockout ²⁸Mg-1p \rightarrow ²⁷Na in high resolution mode
- Proton binding energy 16.8 MeV
- Diffraction peak at missing mass of ⁹Be target

At the forefront of nuclear structure models

- Beyond the shell model: ab initio models
 - Solve many-body problem using NN bare interactions
 - Variational and Green's function Monte Carlo (VMC)
 - No-core shell model (NCSM)
 - So far limited to p-shell nuclei with $5 \le A \le 16$
- Absolute cross sections from knockout reactions
 - Related to spectroscopic factors of overlapping states
 - Can reach rare isotopes and neutron orbitals
 - Can use densities and overlaps from ab initio models

Proposed experiment

- Goals and challenges
- Achieve 5% precision on cross section measurement
- Light ions need large acceptances: corrections needed

Proposed experiment

- Goals and challenges
- Achieve 5% precision on cross section measurement
- Light ions need large acceptances: corrections needed
- Chosen reactions: neutron knockout on ¹⁰Be and ¹⁰C
 - No bound excited states in ⁹Be and ⁹C: one final state only
 - Different neutron binding energies: 6.8 MeV and 21.3 MeV
 - Both VMC and NCSM densities and overlaps available
 - Consistent comparison by using these densities and overlaps in reaction model

Single-particle cross sections

- Densities and fit Wood-Saxon from overlaps
- ▶ VMC (AV18 + UIX)
- NCSM (CD-Bonn)
- σ_{sp} very similar

$\langle^{10}\mathrm{Be} ^{9}\mathrm{Be}+n\rangle$	<i>r</i> (fm)	<i>a</i> (fm)	V_0 (MeV)	$\sigma_{ m sp}~({ m mb})$
SM	1.25	0.70	60.4	36.8
NCSM	1.34(2)	0.57(2)	42.9	36.8(7)
VMC	1.25(3)	0.78(4)	48.0	37.7(7)
$\langle {}^{10}\mathrm{C} {}^{9}\mathrm{C}+n\rangle$				
SM	1.06	0.70	91.1	24.8
NCSM	1.51(2)	0.79(2)	61.6	28.6(6)
VMC	1.38(4)	1.14(6)	70.9	29.5(6)

NSF

GMD'STA

Results

- Consistent approach of reaction model
- Experiment clearly differentiates between VMC and NCSM
- NCSM missing 3-body forces and continuum effects
- ¹⁰C discrepancy with VMC may be due to reaction model assumption (⁹C spectator core when removing 21.3 MeV neutron)

$\langle^{10}\mathrm{Be} ^{9}\mathrm{Be}+n\rangle$	S_F	$\sigma_{\mathrm{th}}~(\mathrm{mb})$	$\sigma_{\mathrm{exp}}~(\mathrm{mb})$
SM	2.62	96.6	
NCSM	2.36	86.9(16)	73(4)
VMC	1.93	72.8(13)	
$\langle {}^{10}\mathrm{C} {}^{9}\mathrm{C}+n\rangle$			
SM	1.93	48.0	
NCSM	1.52	43.4(9)	23.2(10)
VMC	1.04	30.8(6)	

G. F. Grinyer et al., Phys. Rev. Lett. 106, 162502 (2011)

Where we are headed

- Limitations of reaction model for deeply bound cases
- Core-spectator assumption breaking down?
- How to improve reaction model to include core breakup?
- Extend comparison with ab initio calculations
 - Several other p-shell cases including excited final states
 - Mirror removal reactions with same SFs
 - ► Example: (¹⁰Be, ⁹Li) mirror of (¹⁰C, ⁹C)
- Next exclusive experiment looking at neutrons and gammas

Main partners...

- Alexandra Gade (NSCL/MSU)
- Jeff Tostevin / Ed Simpson (University of Surrey)
- Geoff Grinyer (GANIL)
- Kathrin Wimmer (Central Michigan University)

Main partners...

- Alexandra Gade (NSCL/MSU)
- Jeff Tostevin / Ed Simpson (University of Surrey)
- Geoff Grinyer (GANIL)
- Kathrin Wimmer (Central Michigan University)

Thank you for your attention! 谢谢大家听我的演讲!

