" University

PAUL LASKY

NEUTRON STAR MERGER
REMNANTS




Magnetar

GW170817
o 272772777

What about other short GRBs?

Adapted from Chu+2016




GRB 061201 GRB 090510

Rowlinson+2013
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e large sample (~25) of short GRBs with x-ray
plateaus (see also Lii+2015)

 fit millisecond magnetar model TUER—TY
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Troja+2016
energy injection not required




But are these really neutron stars born 1in binary mergers?
GRB140903A - a case study

Bayesian model selection!
Sarin, PL, Ashton (2019)

evidence for magnetar
evidence for fireball

Bayes factor =




But are these really neutron stars born 1in binary mergers?
GRB140903A - a case study

Bayesian model selection!
Sarin, PL, Ashton (2019)

evidence for magnetar

Bayes factor = ,
evidence for fireball

= 1713




But are these really neutron stars born 1in binary mergers?
GRB140903A - a case study

Bayesian model selection!

Sarin, PL, Ashton (2019) the magnetar model is ~1700
times more likely, assuming both
Bayes factor = eVi(.ience for magnetar hypot.heses are.eq.ually
evidence for fireball likely a priori
= 1713




But are these really neutron stars born 1in binary mergers?
GRB140903A - a case study

Bayesian model selection! prior odds
Sarin, PL, Ashton (2019)

evidence for magnetar
evidence for fireball

our prior believe that a magnetar exists
our prior belief that a fireball exists

the odds = X




But are these really neutron stars born 1in binary mergers?
GRB140903A - a case study

: : Mrov
Bayesian model selection! prior odds = / p (Myem) dMyom
Sarin, PL, Ashton (2019) 0

 magnetar model requires supramassive or stable neutron star

e use galactic mass distribution of double neutron star systems
- combine and conserve rest mass (PL+ 2014)

* Odds becomes dependent on unknown TOV mass!




But are these really neutron stars born 1in binary mergers?
GRB140903A - a case study

Bayesian model selection!
Sarin, PL, Ashton (2019)




But are these really neutron stars born 1in binary mergers?
GRB140903A - a case study

Bayesian model selection!
Sarin, PL, Ashton (2019)

take-home message:
GRB140903A tavours a magnetar
model for ALL values of the TOV mass




But are these really neutron stars born 1in binary mergers?

Luminosity
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But are these really neutron stars born in binary mergers?
GRBs 140903A & 130603B e e
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braking indices # 5
can constrain gravitational-wave emission!
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GRB 051221A GRB 070809 SGIRIRINIEY ¢ Pessimistic Tor detection
GRB 060801 GRBLOS0905A GRB 101219A
RB 070724A GRB 090426 anytim€ soon!
e “horizon distance’ for:
- aLLIGO ~ 2Mpc

- Einstein Telescope ~ 45 Mpc
- (Sarin, PL, Ashton, Sammut 2018)
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GW170817 - what did LIGO see?? E

20



GW170817 - what did LIGO see?? ¢
bugger all

~ (translation: nothmé_)
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GW170817 - what did LIGO see?? 7

GW170817 — random cos L

cost =20

bugger all

HMM
ATrHough
FreqHough

(translation: nothing)

LIGO — Hanford A A magnetar (intermediate)

e | apologise sincerely for this figure
being uninterpretable! | “ B MBS merger simulation (short)
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* In a fancy way, it says that we saw
bugger all!
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what about equation of state constraints?

Rowlinson+2013 See also talks by He Gao & Bing Zhang
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what about equation of state constraints?
See also talks by He Gao & Bing Zhang

' tcol (Bp7 Po M7 EOS)

Rowlinson+2013
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what about equation of state constraints?

remhant maés (M) | | PL+2014




what about equation of state constraints?

Leol (Bp7 Po, M7 EOS)
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What about equatlon of state constraints’’

; tCOl (Bp7 Po, M7 EOS)
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what about equatlon of state constraints?
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what about equation of state constraints?
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Drago+2016 - and next talk!?










The user-friendly
Bayesian inference
library

Ashton, Huebner, PL, Talbot + (2018)

A versatile parameter-estimation code being adopted for
production science in next LIGO observing run

git.ligo.org/lscsoft/bilby/

> ¥ )




28
Our Aims:

e Lower the entry point for doing gravitational-
wave and astrophysics Bayesian calculations

- user friendly, intuitive syntax

- robust, yet adaptable code base
- open source

- well documented

- many examples

git.ligo.org/lscsoft/bilby/




git.ligo.org/lscsoft/bilby/
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open gravitational-wave data
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Ashton, Hiibner, PL, Talbot + (2018)




git.ligo.org/lscsoft/bilby/

flux [arb. units]

time - predicted TOA [ms]

Ashton, Graber, PL (in prep.)




git.ligo.org/lscsoft/bilby/

gravitational-waves from hypermassive neutrons stars
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Ashton, Hiibner, PL, Talbot + (2018)




Conclusions

GW170817:

I’m not convinced we know the merger outcome

many hints, some potentially contradictory

Many other SGRBs show evidence of long-lived neutron-star remnants

Rich physics to understand: e.g.,

nuclear equation of state o | L
Putting the power of Bayesian statistics into the

hands of people who probably shouldn’t have 1t.”

gravitational-wave emission :
an Jones

the dream: gravitational-ave inspfgFal with well-behaved kilonova
and x-ray light curve

A



EXTRA SLIDES




Easter, PL + 2019

| waveforms (equal mass

M, x>

fitting factor
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- only require two parameters

Cross vali

progenitors

cstimation

- train on post-merger gravitationa

- generate new, accurate waveforms 1n a fraction of a second
- to be used 1n gravitational-wave searches and parameter
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numerical-relativity simulations:
the dirty little secret!

e fitting factor between two codes with

| same physical set up =0.76 and 0.85!
Takami & Rezzolla

Easter, PL +

e our worst fitting factor = 0.88

our method 1s limited only by the
accuracy of the numerical-relativity
simulations!

Dietrich+

frequency [kHz] Easter, PLL + 2019




