ARC Centre of Excellence for Gravitational Wave Discovery

PAUL LASKY

NEUTRON STAR MERGER REMNANTS

Adapted from Chu+2016

• large sample (~25) of short GRBs with x-ray plateaus (see also Lü+2015)

- fit millisecond magnetar model
 - (Zhang & Meszaros 2001)

Rowlinson+2013

But are these really neutron stars born in binary mergers?

Troja+2016
energy injection not required

GRB140903A - a case study

Zhang+2017
energy injection fits nicely
standard ms magnetar

PL+2017
energy injection fits nicely
generalised ms magnetar

Bayesian model selection!
Sarin, PL, Ashton (2019)

Bayesian model selection!
Sarin, PL, Ashton (2019)

$$= 1713!$$

Bayesian model selection!
Sarin, PL, Ashton (2019)

the magnetar model is ~1700 times more likely, assuming both hypotheses are equally likely a priori

Bayesian model selection! Sarin, PL, Ashton (2019)

the odds = $\frac{\text{evidence for magnetar}}{\text{evidence for fireball}} \times \frac{\text{our prior believe that a magnetar exists}}{\text{our prior belief that a fireball exists}}$

Bayesian model selection! Sarin, PL, Ashton (2019)

$$prior odds = \int_{0}^{M_{\text{TOV}}} p(M_{\text{rem}}) dM_{\text{rem}}$$

- magnetar model requires supramassive or stable neutron star
- use galactic mass distribution of double neutron star systems
 - combine and conserve rest mass (PL+ 2014)
- Odds becomes dependent on unknown TOV mass!

Bayesian model selection!
Sarin, PL, Ashton (2019)

Bayesian model selection!
Sarin, PL, Ashton (2019)

take-home message:

GRB140903A favours a magnetar model for ALL values of the TOV mass

But are these really neutron stars born in binary mergers? GRBs 140903A & 130603B

But are these really neutron stars born in binary mergers?

GRBs 140903A & 130603B

braking indices \(\neq 5 \)

can constrain gravitational-wave emission!

PL & Glampedakis 2016

- Pessimistic for detection anytime soon!
- "horizon distance" for:
 - aLIGO ~ 2Mpc
 - Einstein Telescope ~ 45 Mpc
 - (Sarin, PL, Ashton, Sammut 2018)

GW170817 - what did LIGO see?

GW170817 - what did LIGO see?

bugger all

(translation: nothing)

GW170817 - what did LIGO see?

bugger all

(translation: nothing)

• I apologise sincerely for this figure being uninterpretable!

• In a fancy way, it says that we saw bugger all!

Rowlinson+2013 See also talks by He Gao & Bing Zhang

PL+2014

Ravi & PL (2014)

quark stars?

Ravi & PL (2014)

Drago+2016 - and next talk!?

The user-friendly Bayesian inference Ibrary

Ashton, Huebner, PL, Talbot + (2018)

A versatile parameter-estimation code being adopted for production science in next LIGO observing run

git.ligo.org/lscsoft/bilby/

Our Aims:

- Lower the entry point for doing gravitationalwave and astrophysics Bayesian calculations
- user friendly, intuitive syntax
- robust, yet adaptable code base
- open source

- well documented
- many examples

git.ligo.org/lscsoft/bilby/

git.ligo.org/lscsoft/bilby/

open gravitational-wave data

GW150914

Ashton, Hübner, PL, Talbot + (2018)

git.ligo.org/lscsoft/bilby/ synthetic neutron star injections

Ashton, Hübner, PL, Talbot + (2018)

time - predicted TOA [ms]

neutron star pulse-profile modelling

VELA!!!

Ashton, Graber, PL (in prep.)

3

gravitational-waves from hypermassive neutrons stars

Ashton, Hübner, PL, Talbot + (2018)

Conclusions

- **GW170817:**
 - I'm not convinced we know the merger outcome
 - > many hints, some potentially contradictory
- Many other SGRBs show evidence of long-lived neutron-star remnants
- Rich physics to understand: e.g.,
 - nuclear equation of state
 - gravitational-wave emission

the dream: gravitational-wave inspiral with well-behaved kilonova and x-ray light curve

"Putting the power of Bayesian statistics into the

"Putting the power of Bayesian statistics into the hands of people who probably shouldn't have it."

EXTRA SLIDES

• Machine learning

- train on post-merger gravitational waveforms (equal mass progenitors)
- only require two parameters: M, κ_2
- generate new, accurate waveforms in a fraction of a second
- to be used in gravitational-wave searches and parameter estimation

Easter, PL + 2019

numerical-relativity simulations: the dirty little secret!

- fitting factor between two codes with same physical set up = 0.76 and 0.85!
- our worst fitting factor = 0.88

our method is limited only by the accuracy of the numerical-relativity simulations!

Easter, PL + 2019

