Delineating the properties of matter in cold, dense QCD

Toru Kojo (CCNU)

based on works in collaborations with

- G. Baym, K. Fukushima, S. Furusawa, T. Hatsuda, P. Powell, Y. Song, H. Togashi, T. Takatsuka
- Review) Rept. Prog. Phys. 81 (2018) no.5, 056902
- I, Theoretical orientation from QCD
- 2, Quick review of constraints from NSs
- 3, Microphysics based on quark descriptions

Cold, dense EoS : High density

3-loop pQCD : Freedman-McLerran 78; Baluni 78; Kurkela-Romatschke-Vuorinen 09

[some **4-loop** contributions: E. Sappi et al.]

check of convergence

(Fraga-Pisarski-Schaffner-Bielich 01)

check of renorm. scale dep.

(Kurkela-Romatschke-Vuorinen 09)

• Interactions crucial already at $\mu_q \sim I$ GeV or $n_B \sim I00$ n_0

Cold, dense EoS : Low density

For NS applications (n_B=2-10n₀), the fundamental question is: convergence of many-body forces

e.g. I) parameterized **pure neutron** matter EoS [Gandolfi+, 2009]

 $\sim kin. + 2\text{-body} \qquad \sim 3\text{-body}$ $\varepsilon = n_0 \left[(12 \pm 1 \,\text{MeV}) \left(\frac{n_B}{n_0} \right)^{1.45 \pm 0.05} + (4 \pm 2 \,\text{MeV}) \left(\frac{n_B}{n_0} \right)^{3.3 \pm 0.3} \right]$

e.g.2) Akmal-Pandharipande-Ravenhall EoS (APR 98) [Table V of APR paper]

pure
neutron
matter2 -body int.3 -body int.4-, 5- or
should b
beyond n_0 -4.1-29.91.24.54-, 5- or
should b
beyond n_0 -4.1-29.91.24.5should b
beyond $2 n_0$ -25.1-36.4-17.430.6grow
rapidly! $\langle V_{N-bo}$ $3 n_0$ -35.7-44.7-34.178.0 $\langle V_{N-bo}$ $4 n_0$ -52.2-41.1-76.9160.3 $\langle V_{N-bo}$

4-, 5- or more-body forces should be important as well beyond ~ **2n**₀

 $\langle V_{N-body} \rangle \sim (n_B/n_0)^N$

Cold, dense EoS : Low density

Akmal-Pandharipande-Ravenhall EoS (APR 98)

6/21 QCD with 2-colors (m_{pi} ~ 700 MeV ~ 2M_q)

lattice QCD simulations doable

- $T_c^{BCS} \sim 100 120 \text{ MeV} \rightarrow \Delta \sim 1.75 T_c \sim 175 210 \text{ MeV}$
- Gluons are **insensitive** to medium effects for $\mu_q < IGeV$

Overall picture based on QCD

7/21

 many-quark exchange • few meson exchange Baryons overlap structural change Quark Fermi sea nucleons only hyperons, ⊿, ... [Freedman-McLerran 1976, Kurkela et al 2009] (pQCD) 3-body) strongly correlated ab-initio nuclear cal. most difficult e.g.) ChEFT, variational (d.o.f : quasi-particles??) (d.o.f ??) not explored well Hints from NSs steady progress n_B ~ 2n₀ ~ 5n_c ~100n $(p_{\rm F} \sim 400 \, {\rm MeV})$

Terminology (in this talk)

1) Stiff EoS: P is large at given ε (not necessarily large $c_s^2 = dP/d\varepsilon$)

2) Stiffness strongly depends on density; define, e.g.,

We also use terminology such as stiff-stiff EoS, etc.

8/2 I

stiff-soft vs stiff-stiff vs soft-stiff

stiff-soft vs stiff-stiff vs soft-stiff

[More sophisticated analyses, Han-Alford-Prakash 2013, Bedaque-Steiner 2015]

stiff-soft vs stiff-stiff vs soft-stiff

soft-stiff EoS \rightarrow crossover or weak Ist order for 2-5n₀

"Hadron-quark continuity" (a new baseline?)

[Schafer-Wilczek 1998, Hatsuda+ 2006, ...; cf) quarkyonic; McLerran-Pisarski 2007]

[Akmal+1998, Togashi+2017, Hebeler+2017, Gandolfi+, ...]

[Akmal+1998, Togashi+2017, Hebeler+2017, Gandolfi+, ...]

$$\mathcal{H} = \mathcal{H}_{\text{NJL}} - \underline{H} \sum_{A} (q\Gamma_{A}q)(\bar{q}\Gamma_{A}\bar{q}) + \underline{g_{V}}(\bar{q}\gamma_{0}q)^{2}$$

[Masuda+2015, TK+2014, Blaschke+....]

(for the moment phenomenological, should be derived from color-mag. int.)

Color-mag. int. : multi-facet aspects

I) Coupling \propto velocity \sim p/E

more important in relativistic regime & high density

2) **Pairing**: smaller color- & flavor- reps are favored

 $(\rightarrow \text{ anti-symmetric w.f.})$ [cf) DeRujula+ (1975), Isgur-Karl (1978), ...] hadron mass ordering: N- Δ splitting, etc.

source of color-super-conductivity [Alford, Wilczek, Rajagopal, Schafer,... 1998-]

3) **Baryon-Baryon int.** : short-range correlation

(Pauli + color-mag.) [Oka-Yazaki (1980),...]

channel dependence \rightarrow non-universal hard core (some are attractive!)

mass dependence \rightarrow weaker repulsion for strangeness

\rightarrow remarkably consistent with the lattice QCD [HAL-collaboration]

Remark) pQCD + pairing vs speed of sound ^{18/21}

[see also McLerran-Reddy (2018)]

An exercise: survey for $(g_V, H)_{@5n0}$

Step I) Prepare **realistic** nuclear EoS for **0.5-2**n0

[e.g. Akmal+1998, Togashi+2017, ChEFT, ...] **radius constraint OK**

19/21

Step2) Survey the range of (g_V, H) compatible with **causality**

Trends found in this exercise

for quark EoS consistent with all constraints

• Strangeness seems unavoidable for soft-stiff EoS :

 $n_s \sim n_u \sim n_d$ for $n_B > 5n_0$ ($\mu_B > \sim 1.5 \text{ GeV} \sim 3M_s$)

- Pairing; in MF, color-flavor-locked condensates (color-super)
 stiffening at high n_B
- **Repulsive** n_B-n_B int.

tempers the growth of $n_B \rightarrow$ smooth chiral restoration

not acceptable for conventional hybrid construction

in this sense, a **new class** of quark EoS

20/21

Summary

21/21

Coherent studies essential (Astro-QCD-condensed matter)

- Hints for **soft-stiff** EoS & **causality** \rightarrow H-Q continuity
- Quark descriptions important :
 - \rightarrow **B.C.** for EoS & **BB-int.** & hyperon problems
- Pairing important :
 - Hard to prevent theoretically.
 - Temper softening associated with strangeness.
- Quark descriptions at 5 100 n₀ can & should be improved.

(work in progress)

23/34 "3-window": constituent quarks for hadrons

cf) Manohar-Georgi (1983), Weinberg (2010)

> I -2 GeV (< 0.2 fm)

~ | GeV

(~0.2-1 fm)

 $\Lambda_{\chi} \sim 4 \pi f_{\pi}$

< ~ 0.2 GeV (> ~ I fm)

Perturbative weakly coupled quarks & gluons Chiral + OGE (one-gluon-exchange) l fm ChSB -> constituent quark mass ~300 MeV OGE -> int. b.t.w **constituent** quarks based on **quasi-particle** picture V(r) ~ σ r Confinement R,G,B trap quarks to keep color white quasi-particle gluons \rightarrow **unlikely** generate confining forces r color neutral

"3-window": N-N interactions

How about other channels, NY, YY, NA, ??

Baryon-Baryon int. on a lattice $(SU_{f}(3) \text{ limit})$

[Hatsuda's talk at NFQCD2018]

Mass dependence of NN interactions

Hard core \rightarrow due to some relativistic effects?

Recent quark model studies for hard cores cf) A.Park-W-Park-SuHoungLee (2016),...

evaluate matrix for color-mag. int. for overlapped baryons \rightarrow Channel dep. of the height of the hard core

 \rightarrow semi-quantitative agreement with lattice

NNN, NNY are partially investigated \rightarrow overall repulsion, though not universal

See, Su Houng Lee's talk in NFQCD2018 (3rd week), Kyoto

Quark descriptions for the hard core cf) Oka-Yazaki (1980),...

6q problem in constituent quark models

Resonating group method (RGM) [Wheeler 1937, Hill-Wheeler 1953]

$$\int \phi_A^+(\boldsymbol{\xi}_A) \phi_B^+(\boldsymbol{\xi}_B) (H-E) \, \Psi(\boldsymbol{\xi}_A, \, \boldsymbol{\xi}_B, \, \boldsymbol{R}_{AB}) \, d\boldsymbol{\xi}_A \, d\boldsymbol{\xi}_B = 0$$

 $\Psi(\boldsymbol{\xi}_{A}, \boldsymbol{\xi}_{B}, \boldsymbol{R}_{AB}) = \mathcal{A}[\phi_{A}(\boldsymbol{\xi}_{A})\phi_{B}(\boldsymbol{\xi}_{B})\chi(\boldsymbol{R}_{AB})]$

scattering problems \rightarrow phase shift

Findings

- I, Quark Pauli blocking : NOT enough for the hard core
- 2, Color-magnetic interaction is crucial (enhanced at small mass)
- 3, Hard cores are not universal: attractive for some channels

The picture so far is consistent with the lattice's !

see also A.Park-W-Park-SuHoungLee (2016)

minimal + vector int.

+ attractive color-magnetic int.

+ interpolation

In this picture: **confinement** \rightarrow **softening** or **deconfinement** \rightarrow **stiffening** (opposite to conventional discussions for T=0)

EoS from aLIGO vs QHC18b

aLIGO & Virgo new analyses for GW170817 arXiv: 1805.11581 [gr-qc]

Chiral sym. breaking & restoration

Ist order chiral transition (typical quark models)

Braking density evolution: $I^{st} \rightarrow crossover$

Now add density-density repulsion

 $\Delta H \sim g_V (n_B)^2$

braking the evolution of n_B

 \rightarrow milder changes in M

Details of int. are crucial

Constituent quark models for hadrons

cf) DeRujula-Georgi-Glashow (1975), Isgur-Karl (1978), ...

Color-magnetic interactions : responsible for level splitting

mag. int. is **enhanced** in **relativistic** regimes **coupling** \propto **velocity** \sim **p/E** (\rightarrow **p/M** << 1.) (sensitive to the quark mass) **Capture the gross properties of (S-wave) baryons**

(~I0% accuracy)

23/34 A quark model traditionally used in astro-EoS

cf) Chodos et al (1974), MIT bag model

Over-simplifications

- I, Inside of hadrons is NOT like free media: **ChSB** & constituent quark mass
- 2, Even in the quark matter regime, interactions are **critically important**

 $(n_B \sim 100 n_0 \text{ is not enough for free gas picture})$

Implications for dense matter

If one accepts the quark description for hard cores, it follows

I, Hard core repulsions are weaker for YN & YY than for NN

color-mag. ~ I/M_iM_j $M_{u,d}/M_s$ ~ 3/5

2, Short-range int. can be attractive (though relatively rare)

e.g.) H-dibaryon (uds-uds); double Ω (sss-sss),....

Can we block strangeness to $n_B \sim 5n_0$??

3, M_{u,d,s} reduction -> overall enhancement of hard core repulsion chiral restoration is delayed by the repulsion?

These features are hard to infer from purely hadronic models...

20/3 I Quark-Hadron continuity (some history)

- I, Percolation picture Baym-Chin 1978; Satz-Karsch 1979,...
- 2, In the context of color-superconductivity (CSC) Schafer-Wilczek 1998 symmetry: hadron super fluidity ~ color-flavor-locked (CFL) phases same order parameters : $\langle BB \rangle \sim \langle (qqq)^2 \rangle$ color singlet, but break $U(I)_B$; chiral sym. is also broken confinement-Higgs complementarity Fradkin-Shenkar 1979 dynamics: the interplay between chiral & diquark proposal of double CEP Kitazawa+ 2002; Hatsuda+2006; Zhang+ 2009, ...
- 3, Inferred from the NS constraints (for $2n_0 5n_0$) Masuda+2012, Kojo+2014, soft-stiff EoS & causality \rightarrow **crossover** or **weak** 1st order

Traditional hybrid construction

21/31

- Key (implicit) **assumptions** :
 - I) Hadronic & quark phases are distinct (e.g. by order parameters)
 - 2) Both P_H and P_O are reliable in the overlap region
- → by construction, Q-EoS must be much softer than H-EoS (unless fine tuning worked out)

Constituent quark models for hadrons I

cf) DeRujula-Georgi-Glashow (1975), Isgur-Karl (1978), ...

I, Confining potential put by hand

Even now, no satisfactory analytic derivation... Main info from lattice

2, Constituent quarks assumed: $M_u \sim 350$ MeV, $M_s \sim 540$ MeV

In modern language, produced by dynamical chiral sym. breaking

3, OGE -> semi-short range color-electric & magnetic int.

Baryon density in a neutron star (our EoS)

 For typically observed NSs (M > 1.2M_{sun}) : large fraction (> 50%) of matter has n_B > 2n₀
 → beyond the nuclear regime is crucial for most of NSs 12/34