

Delineating effects of nuclear symmetry energy on the radii and tidal deformabilities of neutron stars

Naibo Zhang (张乃波) Shandong University, Weihai Collaborators: Bao-An Li, Jun Xu, Bin Qi, Shouyu Wang,

Xiamen-CUSTIPEN Workshop, 2019.01.06

Outline

➢Introduction

➢Parameterized equation of state

Relation between the radii and tidal deformabilities

Constraints on symmetry energy

➢Summary

A series of related work: APJ 859, 90 (2018); JPG 46, 014002 (2019); arXiv:1807.07698;

Outline

➢Introduction

➢Parameterized equation of state

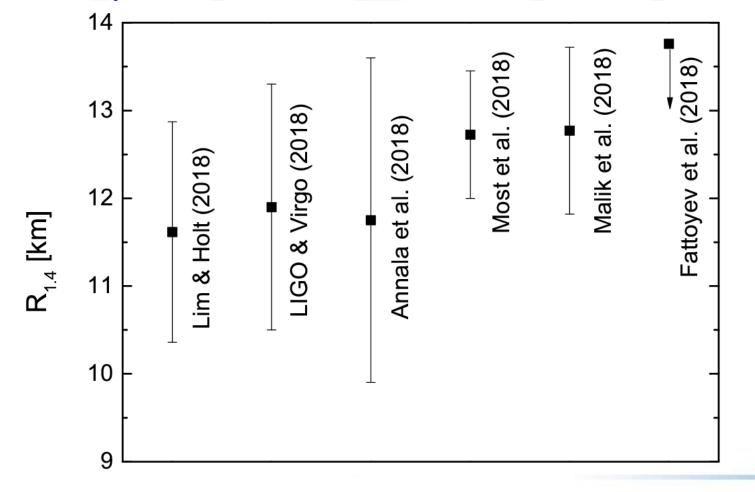
Relation between the radii and tidal deformabilities

Constraints on symmetry energy

➢Summary

Ongoing efforts have been devoted to constrain details of the EOS and reveal possibly interesting new physics from the tidal deformability;

Ongoing efforts have been devoted to constrain details of the EOS and reveal possibly interesting new physics from the tidal deformability;



Ongoing efforts have been devoted to constrain details of the EOS and reveal possibly interesting new physics from the tidal deformability;

✓ What is actually the relationship between the $\Lambda_{1,4}$ and $R_{1,4}$?

The definition of tidal deformability:

$$\Lambda = \frac{2}{3}k_2 \cdot (R/M)^5$$

For M=1.4 M_{sun} , $\Lambda \propto R^5$?

1200

900

600

300

11

 $\Lambda_{1.4}$

The definition of tidal deformability:

$\Lambda = \frac{2}{3}k_2 \cdot$	$(R/M)^{5}$
----------------------------------	-------------

(b)

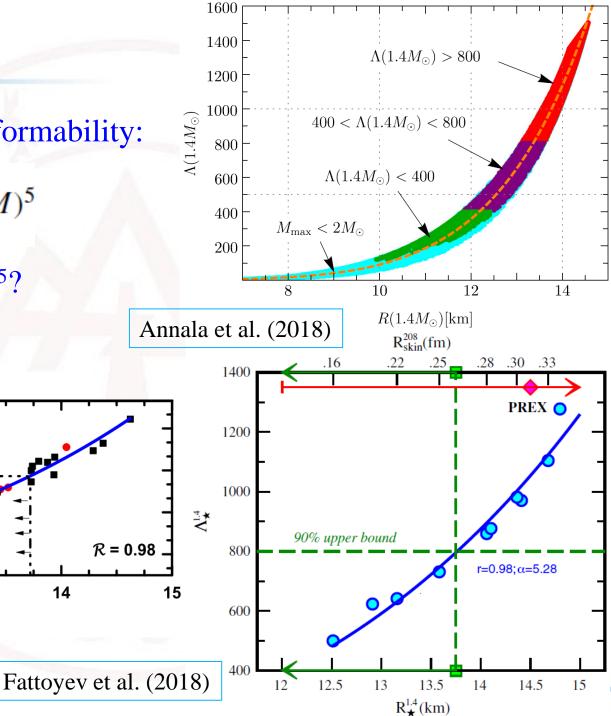
13

R_{1.4}

For M=1.4 M_{sun} , $\Lambda \propto R^5$?

12

Malik et al. (2018)



1200

900

600

300

11

 $\Lambda_{1.4}$

The definition of tidal deformability:

$\Lambda = \frac{2}{3}k_2 \cdot$	$(R/M)^{5}$
----------------------------------	-------------

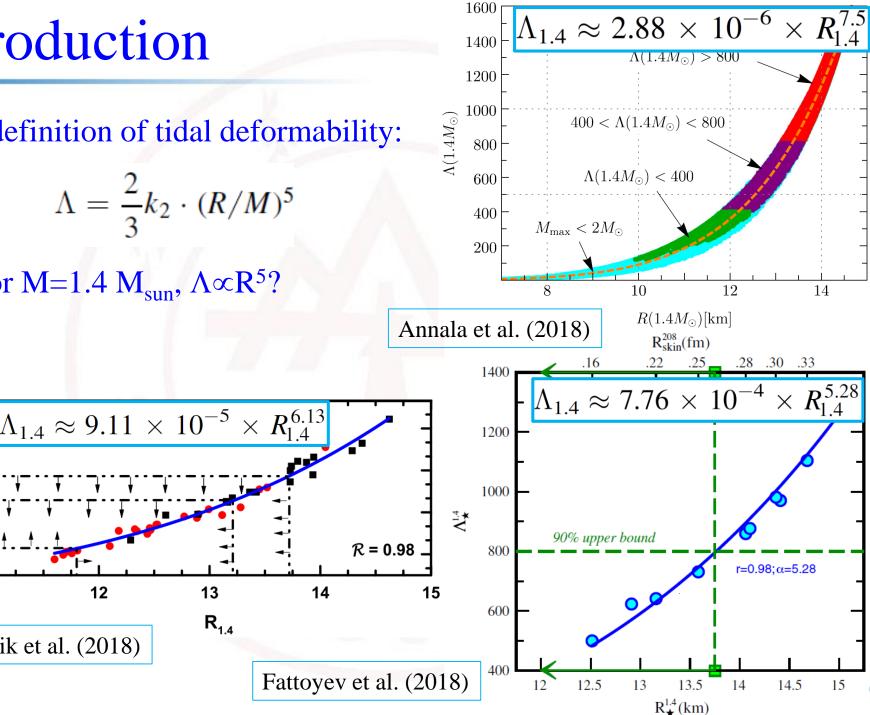
13

R_{1.4}

For M=1.4 M_{sun} , $\Lambda \propto R^5$?

12

Malik et al. (2018)



Ongoing efforts have been devoted to constrain details of the EOS and reveal possibly interesting new physics from the tidal deformability;

✓ What is actually the relationship between the $\Lambda_{1,4}$ and $R_{1,4}$?

✓ What aspects of the EOS of dense neutron-rich matter can be accurately determined by the $\Lambda_{1,4}$?

Ongoing efforts have been devoted to constrain details of the EOS and reveal possibly interesting new physics from the tidal deformability;

✓ What is actually the relationship between the $\Lambda_{1,4}$ and $R_{1,4}$?

✓ What information about the EOS can be extracted from the radii of neutron stars?

Outline

>Introduction

➢Parameterized equation of state

Relation between the radii and tidal deformabilities

Constraints on symmetry energy

➢Summary

Parameterized equation of state

Details about the construction of the parameterized EOS have been introduced by Prof. Bao-An Li or our paper below:

Zhang et al. APJ 859, 90 (2018)

Parameterized equation of state

We parameterize the symmetry energy as a function of density:

$$E_{\rm sym}(\rho) = E_{\rm sym}(\rho_0) + L\left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{K_{\rm sym}}{2}\left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \frac{J_{\rm sym}}{6}\left(\frac{\rho - \rho_0}{3\rho_0}\right)^3$$

✓ $E_{sym}(\rho_0)=31.7\pm 3.2 \text{ MeV};$ ✓ $L=58.7\pm 28.1 \text{ MeV};$ ✓ $-400 \le K_{sym} \le 100 \text{ MeV};$ ✓ $-200 \le J_{sym} \le 800 \text{ MeV};$

Details about the construction of the parameterized EOS have been introduced by Prof. Bao-An Li or our paper below:

Zhang et al. APJ 859, 90 (2018)

Tews et al. (2017); Zhang et al. (2017); Oertel et al. (2017); Li & Han (2013)

Outline

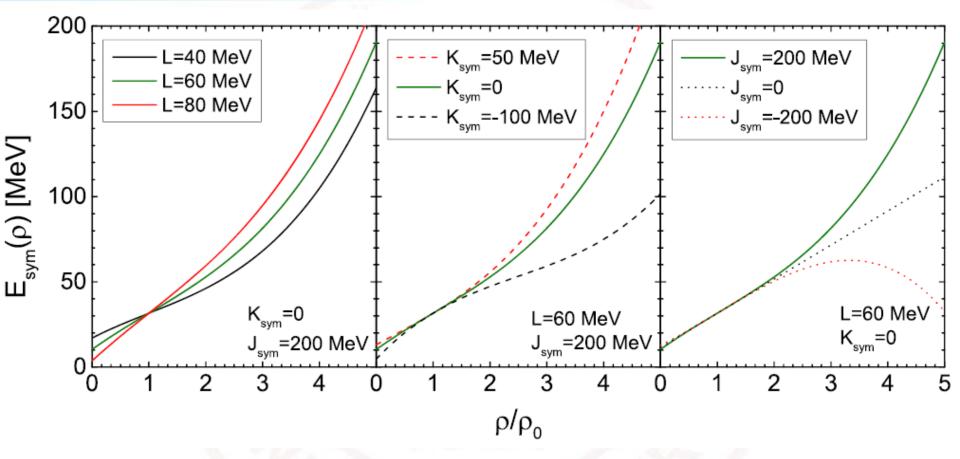
>Introduction

➢Parameterized equation of state

Relation between the radii and tidal deformabilities

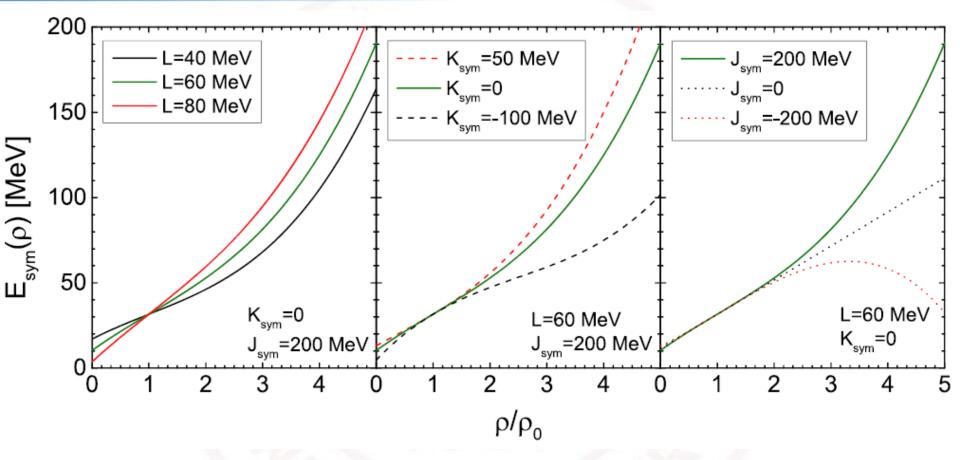
Constraints on symmetry energy

➢Summary



Examples illustrating effects of the L (left), K_{sym} (middle) and J_{sym} (right), respectively, on the density dependence of nuclear symmetry energy $Esym(\rho)$

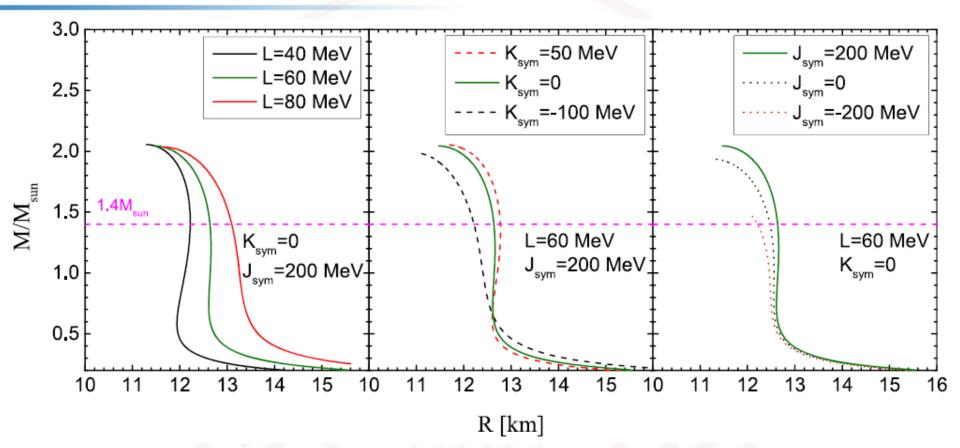
$$E_{\rm sym}(\rho) = E_{\rm sym}(\rho_0) + L\left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{K_{\rm sym}}{2}\left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \frac{J_{\rm sym}}{6}\left(\frac{\rho - \rho_0}{3\rho_0}\right)^3$$



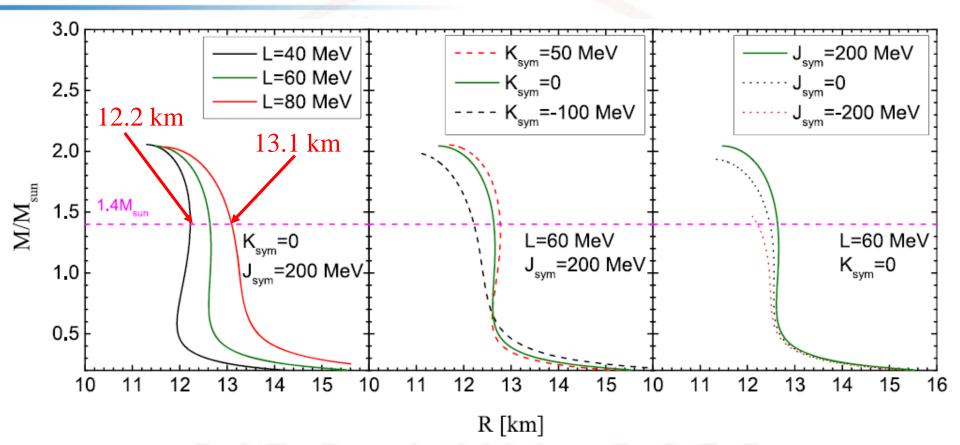
Examples illustrating effects of the L (left), K_{sym} (middle) and J_{sym} (right), respectively, on the density dependence of nuclear symmetry energy $Esym(\rho)$.

$$L \sim \rho_0$$
 $K_{sym} \sim 2\rho_0$

 $J_{sym} \sim 3\rho_0$

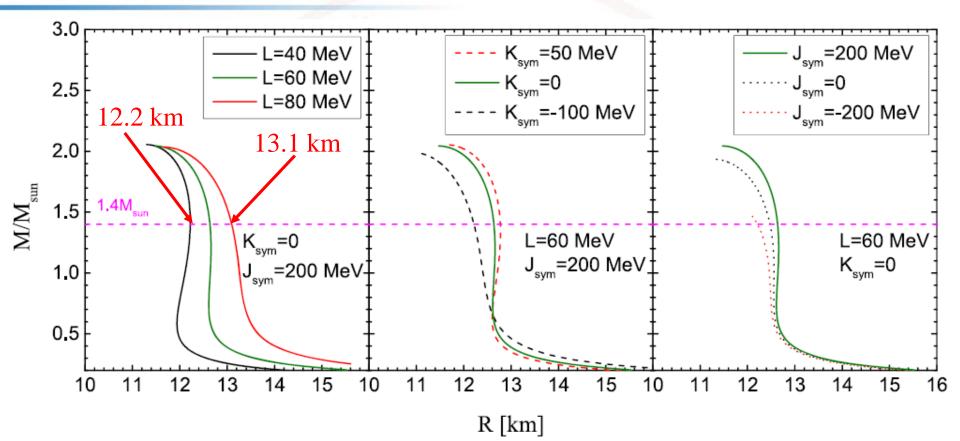


Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the mass-radius correlation of neutron stars.



Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the mass-radius correlation of neutron stars.

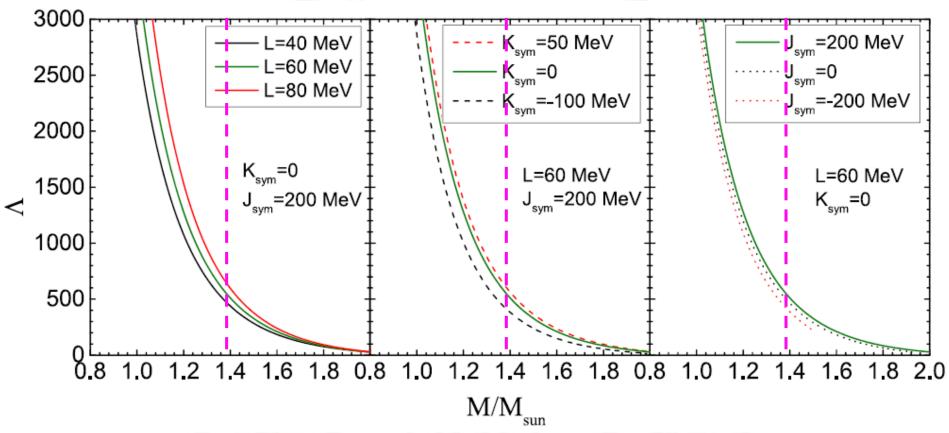
L changes 50% R_{1.4} changes 7%



Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the mass-radius correlation of neutron stars.

L changes 50% R_{1.4} changes 7% K_{sym} changes 150% $R_{1.4}$ changes 5%

J_{sym} changes 200% R_{1.4} changes 3%

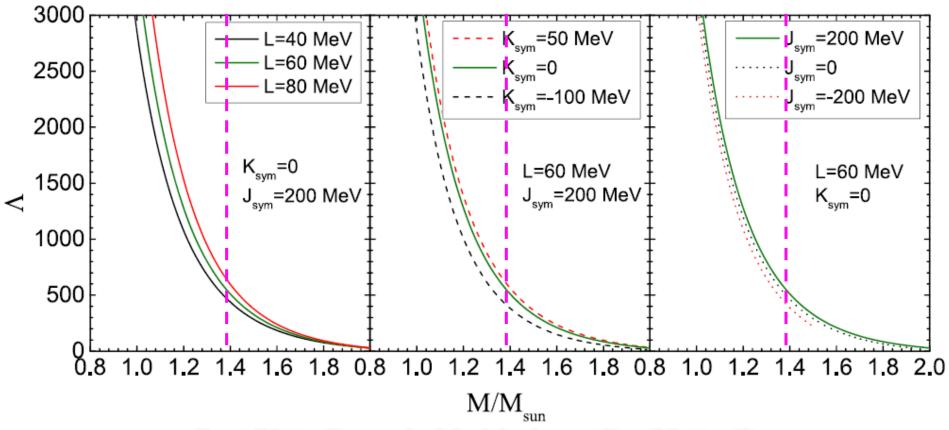


Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the mass-tidal deformability correlation of neutron stars.

L changes 50% $\Lambda_{1.4}$ changes 36%

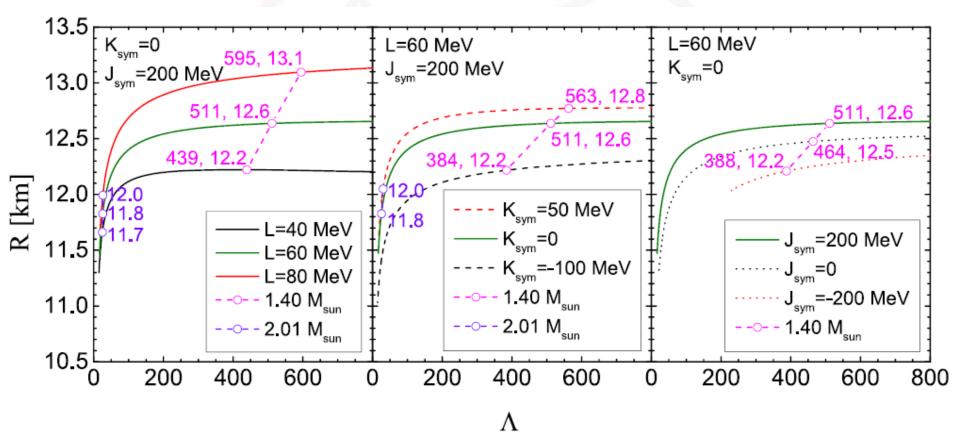
 K_{sym} changes 150% $\Lambda_{1.4}$ changes 47%

 $\begin{array}{l} J_{sym} \text{ changes } 200\% \\ \Lambda_{1.4} \text{ changes } 33\% \end{array}$



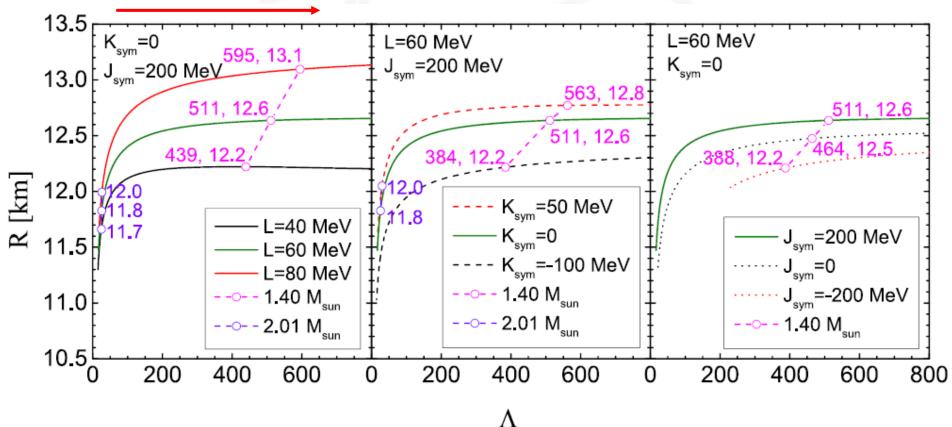
Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the mass-tidal deformability correlation of neutron stars.

A is more sensitive to the variation of $E_{sym}(\rho)$ than the radius;

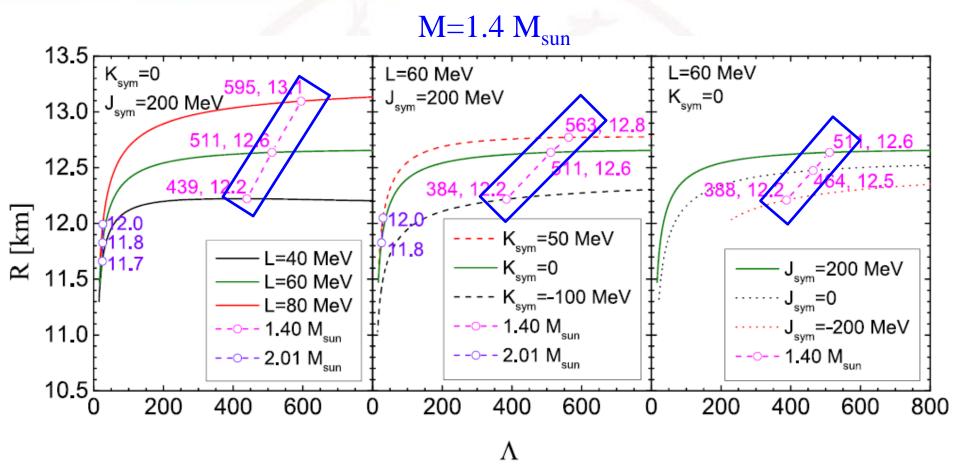


Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the radiustidal deformability correlation of neutron stars.

Mass decreases

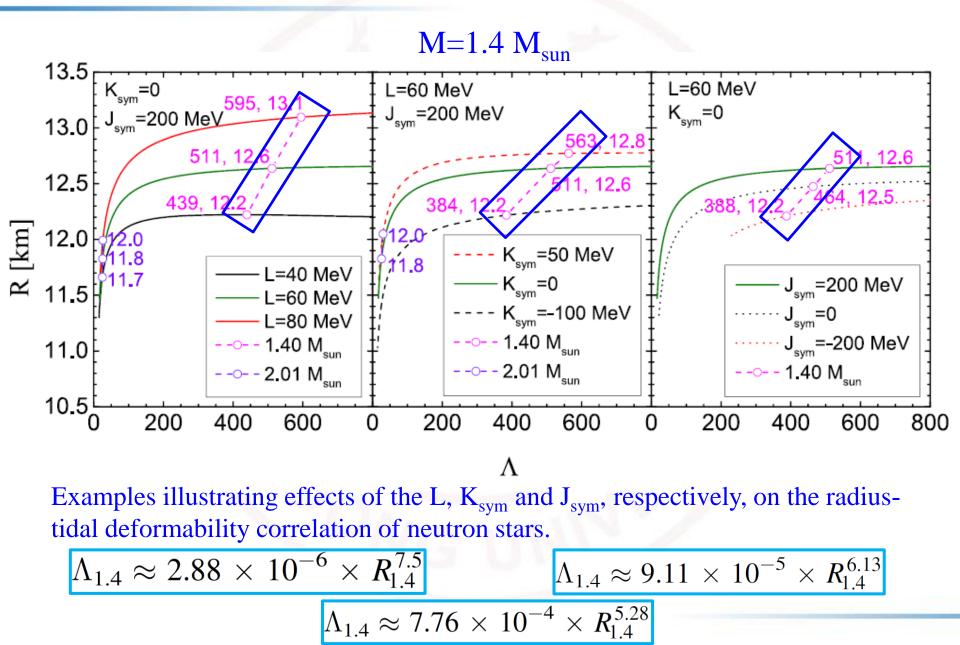


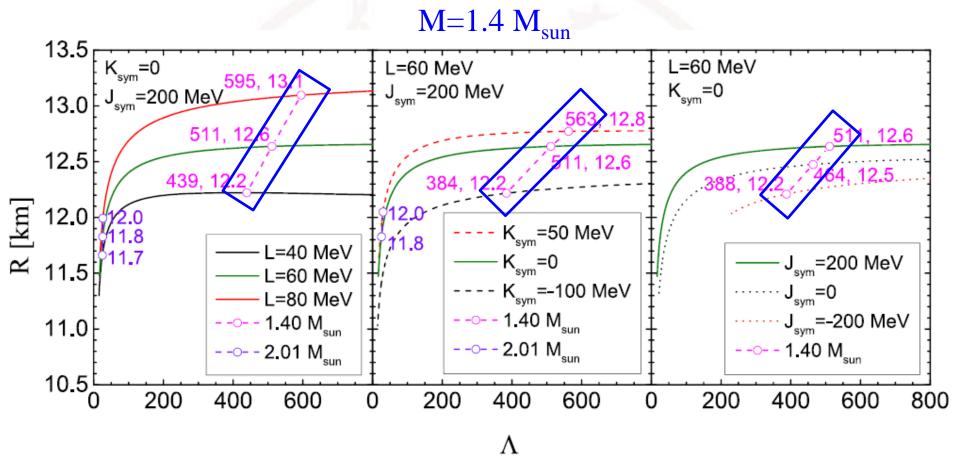
Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the radiustidal deformability correlation of neutron stars.



Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the radiustidal deformability correlation of neutron stars.

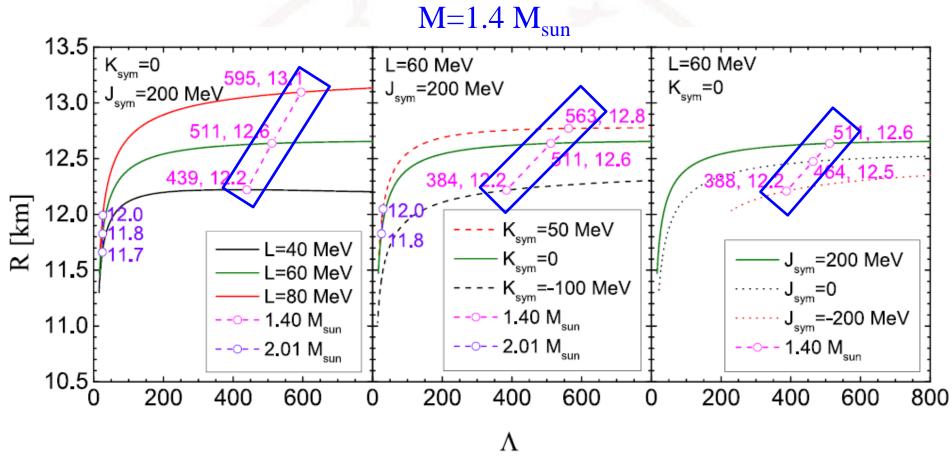
 $R_{1.4}$ increases approximately linearly with $\Lambda_{1.4}$;





Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the radiustidal deformability correlation of neutron stars.

 $R_{1.4}=7.0-14.7$ km, $\Lambda_{1.4}=0-1600$



Examples illustrating effects of the L, K_{sym} and J_{sym} , respectively, on the radiustidal deformability correlation of neutron stars.

 $R_{1.4}=7.0-14.7$ km, $\Lambda_{1.4}=0-1600$

 $R_{1.4} \sim \Lambda_{1.4}$ needs further studies

Outline

>Introduction

Parameterized equation of state

Relation between the radii and tidal deformabilities

Constraints on symmetry energy

≻Summary

$$E_{\rm sym}(\rho) = E_{\rm sym}(\rho_0) + \left[L \left(\frac{\rho - \rho_0}{3\rho_0} \right) + \frac{K_{\rm sym}}{2} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^2 + \frac{J_{\rm sym}}{6} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^3 \right]$$

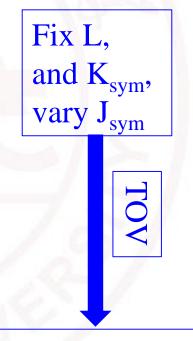
 $E_{sym}(\rho_0)=31.7 \text{ MeV};$

✓ $60 \le L \le 90 \text{ MeV};$ ✓ $-400 \le K_{\text{sym}} \le 100 \text{ MeV};$ ✓ $-200 \le J_{\text{sym}} \le 800 \text{ MeV};$

$$E_{\rm sym}(\rho) = E_{\rm sym}(\rho_0) + \left[L \left(\frac{\rho - \rho_0}{3\rho_0} \right) + \frac{K_{\rm sym}}{2} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^2 + \frac{J_{\rm sym}}{6} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^3 \right]$$

 $E_{sym}(\rho_0)=31.7 \text{ MeV};$

✓ $60 \le L \le 90 \text{ MeV};$ ✓ $-400 \le K_{\text{sym}} \le 100 \text{ MeV};$ ✓ $-200 \le J_{\text{sym}} \le 800 \text{ MeV};$



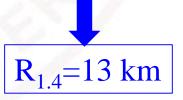
Mass, radius.....

$$E_{\rm sym}(\rho) = E_{\rm sym}(\rho_0) + \left[\frac{\rho - \rho_0}{3\rho_0} \right] + \frac{K_{\rm sym}}{2} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^2 + \frac{J_{\rm sym}}{6} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^3$$

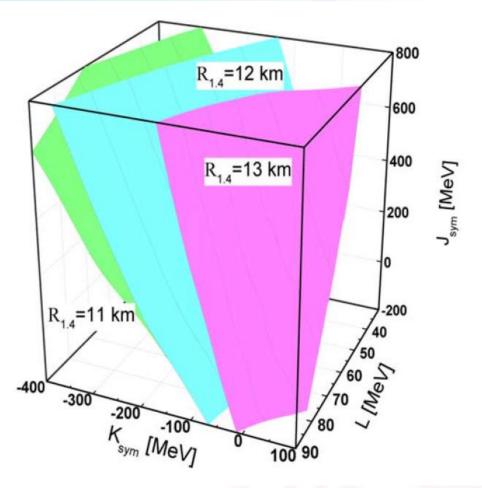
 $E_{sym}(\rho_0)=31.7 \text{ MeV};$

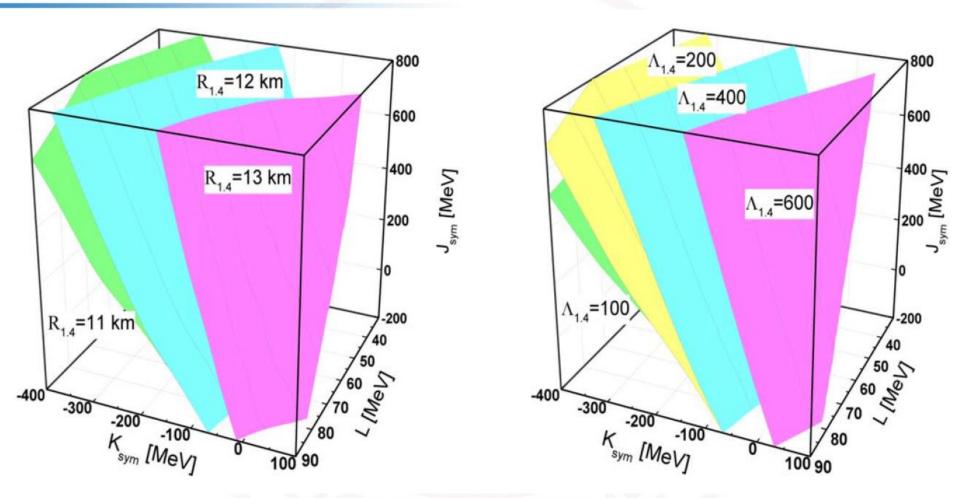
Fix L=60 and K_{sym} =100 set J_{sym} =474

✓ $60 \le L \le 90 \text{ MeV};$ ✓ $-400 \le K_{\text{sym}} \le 100 \text{ MeV};$ ✓ $-200 \le J_{\text{sym}} \le 800 \text{ MeV};$

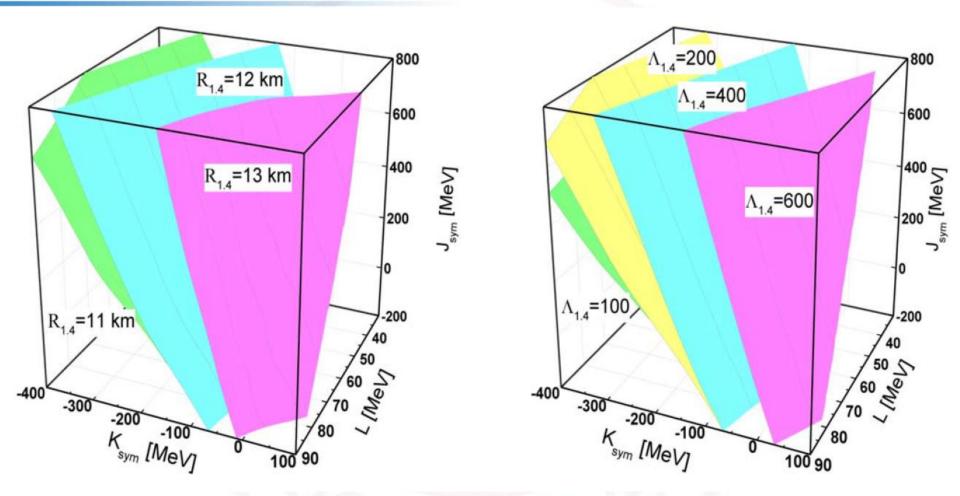


TOV

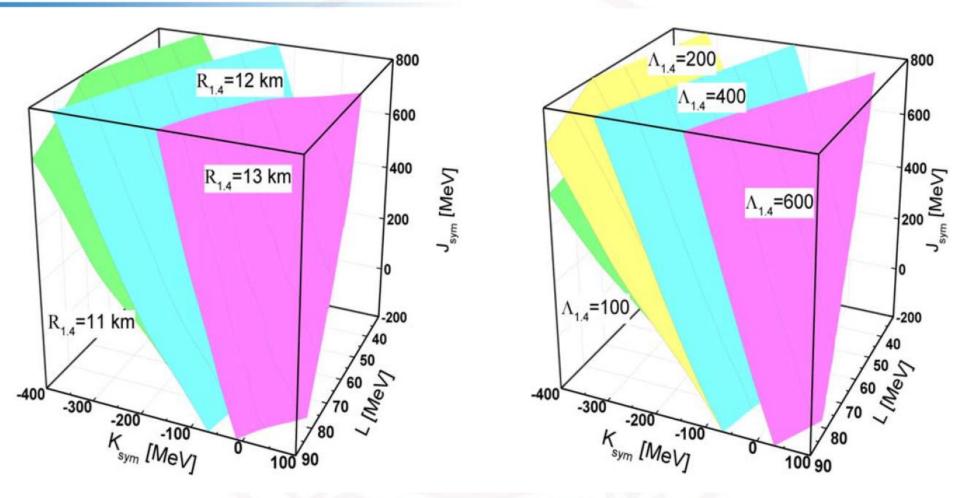




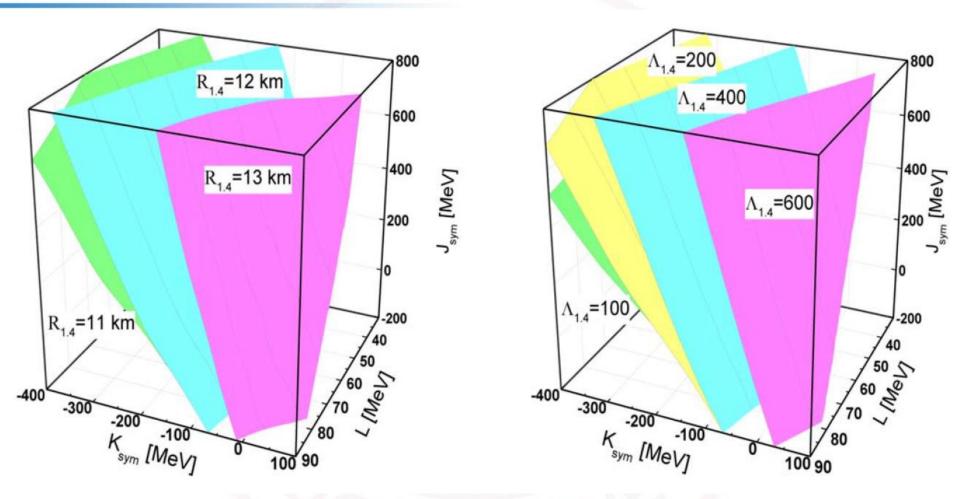
Surfaces of constant radius (left) and tidal polarizability (right) in the symmetry energy parameter space of L, K_{sym} , and J_{sym} , respectively.



 \succ J_{sym} can be essentially any value;



J_{sym} can be essentially any value;
 K_{sym} has an appreciable role in determining the radius;



L alone cannot uniquely determine the radii of neutron stars;
 High-density behavior of E_{sym}(ρ) is also important;

Outline

>Introduction

➢Parameterized equation of state

Relation between the radii and tidal deformabilities

Constraints on symmetry energy

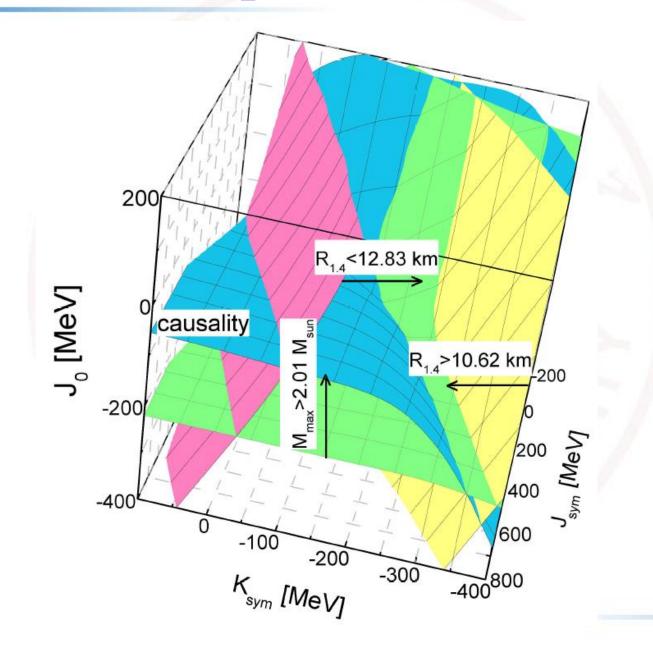
➢Summary

Summary

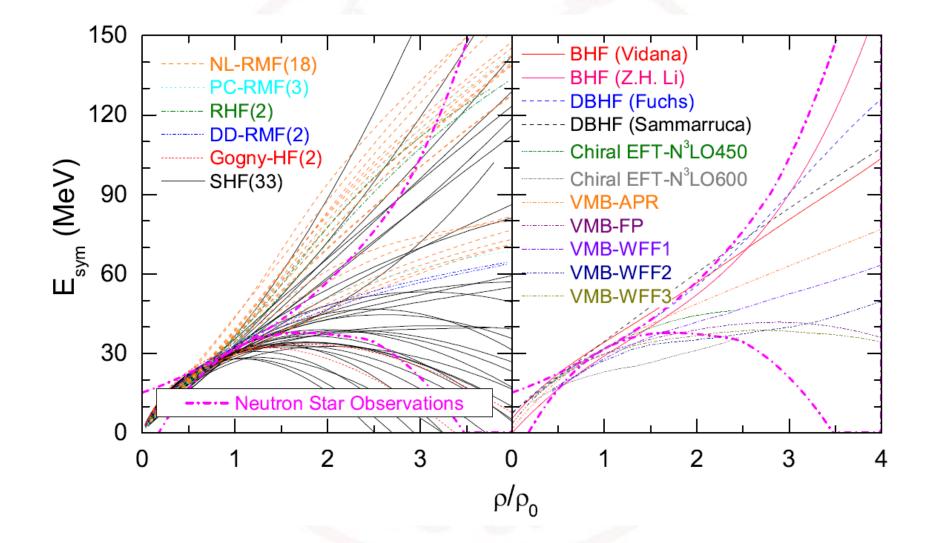
- Using an explicitly isospin-dependent EOS, we first investigated effects of parameters on the radius and tidal deformability;
- ▷ While both the $R_{1.4}$ and $\Lambda_{1.4}$ depend strongly on L, the high density parameters K_{sym} and J_{sym} play appreciable roles;
- The R_{1.4} and $\Lambda_{1.4}$ are approximately linearly correlated and Λ is found to be more sensitive to E_{sym}(ρ) than the radius;
- The individual measurements of $\Lambda_{1.4}$ and $R_{1.4}$ can stringent constrain the high density behavior of symmetry energy;
- > Additional observables and nuclear experiments are necessary to break this degeneracy in order to completely determine the density dependence of $E_{sym}(\rho)$.

Thanks for your attention!

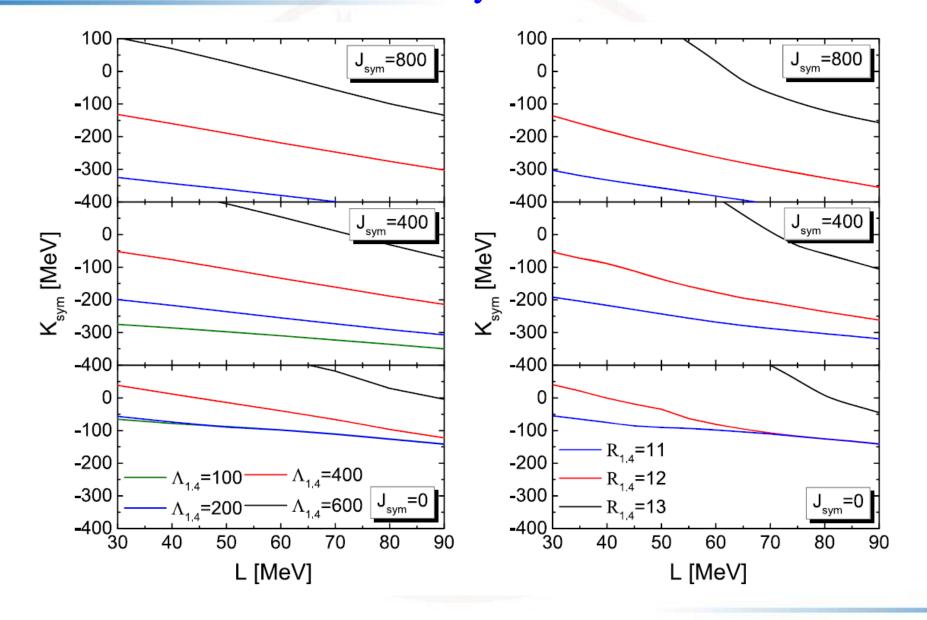
3D parameter space

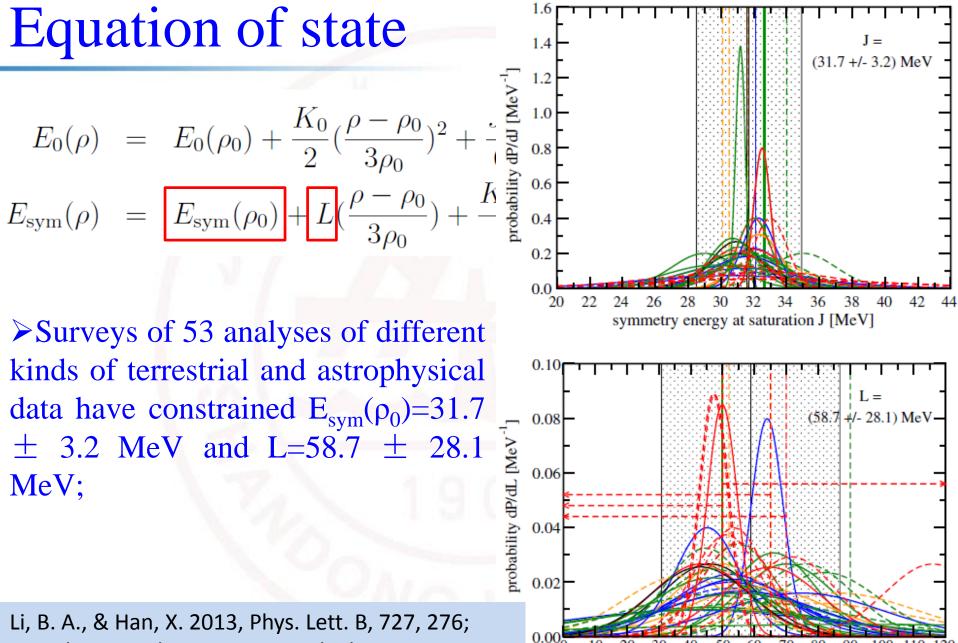


Symmetry energy



2D constraints on E_{sym}



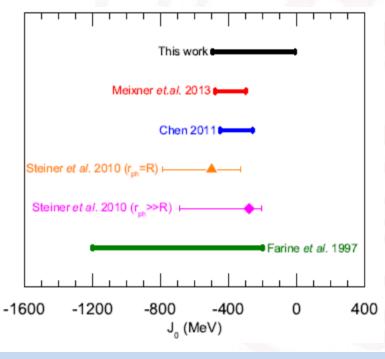


symmetry energy slope coefficient L [MeV]

Oertel, M., et al. 2017, Rev. Mod. Phys., 89, 015007.

Equation of state

➤ The high order coefficients :
✓-400 ≤ K_{sym} ≤ 100 MeV,
✓-200 ≤ J_{sym} ≤ 800 MeV
✓-800 ≤ J₀ ≤ 400 MeV



Cai, B. J., & Chen, L. W. 2017, NST, 28, 185.

