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QPOs in SGRs 
•  Quasi-periodic oscillations (QPOs) in afterglow of giant flares from soft-

gamma repeaters (SGRs) 

–  SGR 0526-66 (5th/3/1979) : 43 Hz 

–  SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz 

–  SGR 1806-20 (27th/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz 

–  additional QPO in SGR 1806-20 is found : 57Hz (Huppenkothen + 2014) 

Strohmayer & Watts (06) 

•  Crustal torsional oscillation ? 

•  Magnetic oscillations ? 

(Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06) 
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torsional oscillations 
•  axial parity oscillations 

–  incompressible 

–  no density perturbations (less associated with GWs) 

•  in Newtonian case 

 

–  μ: shear modulus 

–  frequencies ∝ shear velocity  

–  overtones depend on crust thickness 

•  torsional oscillations independently of core EOS 
–  by integrating from the surface with (M, R) 

(Hansen & Cioff  1980) 

vs = µ / ρ
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EOS near the saturation point 
•  Bulk energy per nucleon near the saturation point of 

symmetric nuclear matter at zero temperature; 
symmetry parameter 

experiments for 
stable nuclei 

incompressibility 

w (energy) 

w0 

0 

S0+w0 

n0 

S0 

pure neutron 
matter (α=1 ) 

symmetric 
nuclear matter 

(α= 0 ) 

L (gradient) 

K0 (curvature) 

n (density) 
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P(n) = −n2 dw
dn

current constraints on K0 & L 
 - K0 = 230 ± 40 MeV (Khan+13) 
 - 40 ≲ L ≲ 80 MeV (Li+ 13)  

ni : ion number density 
Z : charge of nuclei 
a : Wigner-Seitz radius 

(Strohmayer+91)  

bcc lattice 
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we adopt a phenomenological EOS, 
characterized by (K0, L) 



pasta phase 

 
•  with larger L, pasta phase becomes narrower 

•  For L ≳ 100MeV, pasta structure almost disappears. 

SYMMETRY ENERGY AT SUBNUCLEAR DENSITIES AND . . . PHYSICAL REVIEW C 75, 015801 (2007)

the nucleon part nw + mnc
2nn + mpc2np [see Eq. (1)] and

the electron part (15). By comparing the resultant six energy
densities, we can determine the equilibrium phase.

III. EQUILIBRIUM SIZE AND SHAPE OF NUCLEI

We proceed to show the results for the equilibrium nuclear
matter configuration obtained for various sets of the EOS
parameters L and K0 as shown in Fig. 1. These parameters are
still uncertain because they are little constrained from the mass
and radius data for stable nuclei [2]. As we shall see, the charge
number of spherical nuclei and the density region containing
bubbles and nonspherical nuclei have a strong correlation
with L.

We first focus on spherical nuclei, which constitute an
equilibrium state in the low-density region. We calculate the
charge number of the equilibrium nuclide as a function of nb for
the EOS models A–I as depicted in Fig. 2. Note that the recent
GFMC calculations of the energy of neutron matter based on
the Argonne v8’ potential [15] are close to the behavior of
the model E. Hereafter we will thus call the model E as a
typical one. The result is shown in Fig. 3. For densities below
∼0.01 fm−3, the calculated density dependence of the charge
number Z is almost flat, a feature consistent with the results
in earlier investigations [1]. More important, the calculated
charge number is larger for the EOS models having smaller L,
and this difference in Z is more remarkable at higher densities.

As we shall see later in this section, this property of
Z is related to the tendency that with increasing L, the
nuclear density decreases while the density of the neutron
gas increases. Note that Z is, within a liquid-drop model [1],
determined by the size equilibrium condition relating the
Coulomb and surface energies in such a way that Z increases
with increasing surface tension. Because the Thomas-Fermi
model adopted here can be mapped onto a compressible liquid-
drop model [2], the present results may well be interpreted in
terms of the liquid-drop model. In fact we shall estimate the
surface tension from the Thomas-Fermi model as a function of
L and discuss how the surface tension depends on the nuclear
density and the neutron sea density.

We also note that the density at which the phase with
spherical nuclei ceases to be in the ground state is between
0.05 and 0.07 fm−3. This result, consistent with the results
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FIG. 3. (Color online) The charge number of spherical nuclei as
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FIG. 4. (Color online) The average proton fraction as a function
of nb, calculated for the EOS models A–I.

obtained in earlier investigations [1,7,10], will be discussed
below in terms of fission instability.

The average proton fraction, which is the charge number
divided by the total nucleon number in the cell, is plotted in
Fig. 4. We observe that the dependence of the average proton
fraction on the EOS models is similar to that of Z. We also
find that the average proton fraction basically decreases with
baryon density. This is a feature coming from the fact that as
the baryon density increases, the electron chemical potential
increases under charge neutrality and then the nuclei become
more neutron-rich under weak equilibrium.

We next consider the density region where bubbles and
nonspherical nuclei appear in equilibrium, i.e., the density
region of the “pasta” phases. We start with such a density
region calculated for the EOS models A–I. The results are
plotted in Fig. 5. Except for the model C, we obtain the
successive first order transitions with increasing density:
sphere → cylinder → slab → cylindrical hole → spherical
hole → uniform matter. A marked correlation of the upper end
of the density region with the parameter L can be observed by
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FIG. 5. (Color online) The density region containing bubbles and
nonspherical nuclei as a function of L, calculated for the EOS models
A–I. For comparison, the density corresponding to u = 1/8 in the
phase with spherical nuclei and the onset density, n(Q), of proton
clustering in uniform nuclear matter, which will be discussed in
Sec. IV, are also plotted by circles and crosses, respectively.
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uniform matter 

spherical nuclei 

pasta phase 
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constraint on L via QPO frequencies 
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1)  all QPOs come from crustal 
torsional oscillations (HS+13a) 

2)  QPOs except for 26Hz come from 
crustal torsional oscillations (HS+13b) 

cf) L = 40 ~ 80 MeV  ?? 
one needs another oscillation 

mechanism to explain the 26Hz QPO. 
5 
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elastic properties in pasta 
•  cylindrical nuclei 

•  slab-like nuclei 
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elastic properties of the mesomorphic phases and
estimate elastic constants.
We shall concentrate on the phases with rod-like

and slab-like nuclei, since they are expected to be the
w xdominant ones. According to Ref. 9 , these

‘‘spaghetti’’ and ‘‘lasagna’’ phases constitute, re-
1 1spectively, roughly and of the mass lying be-5 2

tween the core and the ordinary solid crust, where
w xnuclei are roughly spherical. In Ref. 11 these pro-

1 1portions are found to be about and . Thus the2 3
fraction of mass in the bubble phases is relatively
small.
As a model, we shall assume uniform rods and

slabs. For symmetric nuclear matter, Thomas–Fermi
w xcalculations 7 have confirmed that these simple

configurations are the thermodynamically favorable
ones. Clearly there is no increase in energy if rods or
slabs are displaced in directions that lie in the plane
of the slabs, or along the rods. Consequently there is
no restoring force for certain sorts of distortion, and
they thus have the elastic properties of liquid crys-
tals. In the ‘‘lasagna’’ and ‘‘spaghetti’’ phases, mi-
croscopic calculations indicate that there is positional
order in one and two directions, respectively, main-
tained by the Coulomb repulsion of rods and slabs
w x4–9 . Accordingly, they conform to the definitions

w xof columnar phases and smectics A 3 . More com-
Žplex positionally ordered phases e.g., smectics C,

.cholesterics are precluded by the symmetry of the
equilibrium shapes of the nuclei. At the temperatures

Ž 8 .of neutron star interiors ;10 K positionally dis-
Ž .ordered nematic phases are unlikely, since one

would expect the ordering temperature of rods and
plates to be comparable with the melting temperature
for matter with spherical nuclei, ;1010 K. We
emphasize, however, that the physical reasons for the
spatial structure of the mesomorphic phases in the
laboratory and in neutron stars are very different. For
laboratory liquid crystals, the non-spherical shape of
the molecules drives the tendency to form rod-like
and slab-like structures, while in neutron stars, it is a
spontaneous symmetry breaking brought about by
the competition between the nuclear surface energy
and the Coulomb energy. In the neutron star case,
the basic objects, nucleons, from which structures
are constructed are spherical, while in laboratory
liquid crystals, the basic ingredients are non-spheri-
cal molecules.

To calculate energies of these phases we adopt a
generalized liquid drop model, with bulk, surface
and Coulomb energies. In the deformations that we
study in this paper we assume that the total density
remains constant. Distortion can lead to a redistribu-
tion of neutrons between nuclear matter and neutron
matter, but this is small because bulk energy densi-
ties are large compared with those of surface and
Coulomb energies. Therefore we may assume that
the fractions of the total volume occupied by nuclear
matter and neutron matter, and their local densities
remain constant, and consequently only the Coulomb
and surface energies are altered.
We begin by estimating the elastic constants for

the layered phase. Since there is complete rotational
symmetry about the axis perpendicular to the layers,
which we denote by Oz, this phase is similar to a
smectic A liquid crystal, and the energy density due

w xto deformation may be written in the form 3
2B E u K 2121 2E s y = u q = u , 1Ž . Ž .Ž .d H H22 E z 2

where u is the displacement of layers in the z
direction. The first term is associated with a change

Ž .of interlayer distance Fig. 1a . The shear shown in
Fig. 1b is equivalent, due to rotational invariance, to
reducing the interlayer spacing, an effect taken into
account by the second term in the square brackets.
The second-order elastic constant K is associated1
with splay deformations. As a first case, we consider
a distortion that maintains the planar character of the
slabs but changes the layer spacing, which we denote
by 2 r . The surface energy per unit volume, Ec s

scales as ry1, while the Coulomb energy per unitc
volume, E scales as r 2, and therefore in equilib-C c

Fig. 1. Linear deformations. Cross sections of the slabs and rods
in equilibrium are indicated by full lines, and, after deformation,
by the hatched areas. a: compression perpendicular to the slabs
Ž .rods ; b: shear; c: transverse shear in the columnar phase; the

Ž .primitive translation vectors a , a and their counterparts in the1 2
Ž .reciprocal lattice k , k are also shown.1 2
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In the calculations above we assumed that the
thickness of a slab measured along Oz remains
unperturbed. In reality, the slab will be thinner near

Ž .the extrema of u x and thicker near the extrema of
E urE x. Allowance for this effect, however, yields a

² :contribution to E containing an additional smalld
Ž 2 2 . 2factor ; k qk r relative to the terms alreadyTF c

considered.
Finally, we remark that, even though at finite

temperatures strict long range positional order of
layered phases will be destroyed according to the
standard Landau-Peierls argument, our theoretical
estimates of elastic constants should be a good ap-
proximation at low temperatures.
Now we turn to the columnar phase. We assume

the rods to have a circular cross section of radius rN
and define r by the condition that the density ofc
rods per unit area is 1rp r 2. Then the scaling lawsc

Ž .that lead to Eq. 2 hold also for this case.
The lowest energy configuration is one with rods

on a two-dimensional triangular lattice. We choose
Oz to be the axis of the D symmetry. Displace-h
ments are then described by a two-dimensional vec-

Ž .tor us u ,u , and the energy of deformation isx y

2 2B E u E u C E u E ux y x yE s q q yd ž / ž /2 E x E y 2 E x E y

22 2E u E u K E ux y 3q q q 2ž / ž /E y E x 2 E z

2 XX 4E u E u Eu B Eux yXqB q q .ž / ž /ž /E x E y E z 2 E z
11Ž .

The first two lines of this formula reproduce Eq.
Ž . w x7.28 of Ref. 3 . The constant B is associated with
uniform transverse compression or dilation, C with

Ž .transverse shear Fig. 1c , and K with bending.3
The third line contains higher-order terms. The

last one may be important when amplitudes of longi-
Ž XX.1r2tudinal deformations exceed K rB . The term3

with BX provides a non-linear coupling of transverse
and longitudinal deformations, which causes, among
other effects, a breakdown of linear elasticity and

Žhydrodynamics at large scales see §8.3–§8.4 of Ref.
w x.3 . In the case of smectics, an analogous coupling

is provided by the cross term coming from the
Ž .expression in square brackets in Eq. 1 .

The terms B, BX, and BXX stem from the energy
increase due to the change of the cross section of the
unit cell. A longitudinal shear E u rE zsD accompa-x
nied by uniform transverse compression E u rE xsx
E u rE ysDXr2 maintains the triangular lattice buty
leads to a change of the lattice spacing proportional

Ž X.1r2 Ž 2 .1r4 Ž . Ž .to 1qD r 1qD . Then Eqs. 2 and 11
3 X 3 XX 3yield Bs E , B sy E , and B s E .C0 C0 C02 4 8

The two other constants are associated with defor-
mations that are not a simple scaling of the triangular
lattice. We estimate them in a way analogous to that
for smectics. Imposing a perturbation of the form
Ž .u z su coskz and Fourier transforming, we arrive0
at the expression

22 22p wr J k Pu 2 J k rŽ . Ž .X p n lm 0 1 lm N² :E s ,ÝC 22 2 ž /k rk qk q nkŽ . lm Nlmn TF lm

12Ž .
where k s lk qmk is a reciprocal lattice vector.lm 1 2
In the absence of transverse deformation, k and k1 2

1r2 y1'Ž .are vectors of length 8pr 3 r , with an anglec
Žpr3 between them Fig. 1c; we shall assume that k2
.is directed along Oy . With u s0, only the term0

ns0 survives, and neglecting k , we recover Eq.TF
Ž . w x10 of Ref. 6 for E . The analytic formula ob-C0
tained by replacing the hexagonal unit cell by an

w xequivalent cylinder 4 ,
2E s pr2 r r w ln 1rw y1qw ,Ž . Ž . Ž .Ž .C0 p N

13Ž .
turns out to be very accurate at the values of w at
which the ‘‘spaghetti’’ phase is expected 1: it under-
estimates E for the hexagonal cell by less thanC0
0.6% at w-0.35, which is several times smaller
than the difference due to inclusion of a realistic
screening wavenumber k f0.4 ry1. Since for theTF c
columnar case the surface energy is E s2wsrr ,s N

Ž .1r3Ž 2w Ž . x.y1r3one finds r s 2s pr ln 1rw y1qwN p
in equilibrium.

1 The columnar phase is favored for w between a lower limit of
Ž0.15–0.20 and an upper limit of 0.30–0.35 and an upper limit of
. w xw for the layered phase is about 0.60–0.65 4–7 .

higher order term 

bending 

uniform 
transverse 
compression 

transverse shear 
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A transverse shear E u rE ysD changes k byx 1 y
1r2'Ž . Ž .2p 3 Drr Fig. 1c . Numerical summation ofc
Ž .the series 12 and identification of the term quadratic

in D yields the elastic constant C, shown in Fig. 2a.
In the relevant range of w, it can be approximated as

Ž . Ž . Ž . Žlog CrE f2.1 wy0.3 dashed line . This es-10 C0
timate of C is only a first approximation, since we
have kept the cross sections of rods circular, whereas

.in reality they can adjust their form to the shear .
Ž .Finally, using a finite u in Eq. 12 , performing0

the summation and identifying the term proportional
to k 4u2 , we determine the bend constant K , which0 3
is plotted in Fig. 2b. In the physically relevant range

Ž . 2of w, K s 0.064y0.067 E r . The term propor-3 C0 c
tional to k 4u4 yields for BXX the value obtained0
earlier.
The fact that matter in neutron stars near the

boundary of the core has the elastic properties of
liquid crystals rather than a crystalline solid will
have important consequences for a number of as-
pects of neutron star behavior. First, the maximum
elastic energy that can be stored in the crust will be
reduced, and this should be taken into account in
models of glitch phenomena and starquakes that
depend on the deviations of the figure of the star

Ž w x.from that for a fluid see, for example, Ref. 12 . It
is not possible to make a quantitative estimate of the
reduction of the elastic rigidity of the outer parts of
the star without a detailed model for the orientation
of the liquid-crystal phases, but since these phases
are estimated to make up roughly half of the matter
by mass outside the core, one might expect the
effective elastic rigidity to be reduced by roughly a
factor of 2. Since the‘‘plate tectonics’’ of liquid
crystals is likely to be very different from that of
crystalline solids, a second problem where the elastic

Fig. 2. Shear constant C and bend constant K of the columnar3
phase.

properties will be crucial is in models of the evolu-
tion of neutron star magnetic fields that invoke such

w xprocesses 13 . Other applications are to the propaga-
tion of elastic distortions, and to the energy of
defects in the liquid-crystal structure.
In our discussion above we assumed that in the

absence of deformation the spacings of rods and
slabs had their equilibrium values. However, in real-
ity, this may not be the case, since to alter the
spacing requires a major rearrangement of the proton
distribution. Just how easy it is to do this depends on
how slabs and rods are connected to each other, and
the related question of what defects are present.
Should the spacing be smaller than its equilibrium
value, there will be a positive contribution to the

Ž .Ž .2elastic energy of the form E r2yE = u ,s C H
which gives a restoring force linear in the deforma-
tion. Should the spacing be larger, this contribution
will be negative, which gives a tendency to rotation
and leads to spontaneous deformation analogous to

w xthe Helfrich effect in conventional liquid crystals 3 .
Eventually the spacing will approach equilibrium,
either by spontaneous reconnection of rods and slabs
or by motion of defects.
To summarize, the above considerations indicate

that matter near the boundary with the core of a
neutron star has the elastic properties of a liquid
crystal, rather than a conventional solid. To distin-
guish this region from that further out in the star, we
consider it appropriate to refer to it as the ‘‘mantle’’
rather than as part of the ‘‘crust’’. It is clear that the
properties of neutron stars need to be reconsidered in
light of this new understanding.
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elastic properties of the mesomorphic phases and
estimate elastic constants.
We shall concentrate on the phases with rod-like

and slab-like nuclei, since they are expected to be the
w xdominant ones. According to Ref. 9 , these

‘‘spaghetti’’ and ‘‘lasagna’’ phases constitute, re-
1 1spectively, roughly and of the mass lying be-5 2

tween the core and the ordinary solid crust, where
w xnuclei are roughly spherical. In Ref. 11 these pro-

1 1portions are found to be about and . Thus the2 3
fraction of mass in the bubble phases is relatively
small.
As a model, we shall assume uniform rods and

slabs. For symmetric nuclear matter, Thomas–Fermi
w xcalculations 7 have confirmed that these simple

configurations are the thermodynamically favorable
ones. Clearly there is no increase in energy if rods or
slabs are displaced in directions that lie in the plane
of the slabs, or along the rods. Consequently there is
no restoring force for certain sorts of distortion, and
they thus have the elastic properties of liquid crys-
tals. In the ‘‘lasagna’’ and ‘‘spaghetti’’ phases, mi-
croscopic calculations indicate that there is positional
order in one and two directions, respectively, main-
tained by the Coulomb repulsion of rods and slabs
w x4–9 . Accordingly, they conform to the definitions

w xof columnar phases and smectics A 3 . More com-
Žplex positionally ordered phases e.g., smectics C,

.cholesterics are precluded by the symmetry of the
equilibrium shapes of the nuclei. At the temperatures

Ž 8 .of neutron star interiors ;10 K positionally dis-
Ž .ordered nematic phases are unlikely, since one

would expect the ordering temperature of rods and
plates to be comparable with the melting temperature
for matter with spherical nuclei, ;1010 K. We
emphasize, however, that the physical reasons for the
spatial structure of the mesomorphic phases in the
laboratory and in neutron stars are very different. For
laboratory liquid crystals, the non-spherical shape of
the molecules drives the tendency to form rod-like
and slab-like structures, while in neutron stars, it is a
spontaneous symmetry breaking brought about by
the competition between the nuclear surface energy
and the Coulomb energy. In the neutron star case,
the basic objects, nucleons, from which structures
are constructed are spherical, while in laboratory
liquid crystals, the basic ingredients are non-spheri-
cal molecules.

To calculate energies of these phases we adopt a
generalized liquid drop model, with bulk, surface
and Coulomb energies. In the deformations that we
study in this paper we assume that the total density
remains constant. Distortion can lead to a redistribu-
tion of neutrons between nuclear matter and neutron
matter, but this is small because bulk energy densi-
ties are large compared with those of surface and
Coulomb energies. Therefore we may assume that
the fractions of the total volume occupied by nuclear
matter and neutron matter, and their local densities
remain constant, and consequently only the Coulomb
and surface energies are altered.
We begin by estimating the elastic constants for

the layered phase. Since there is complete rotational
symmetry about the axis perpendicular to the layers,
which we denote by Oz, this phase is similar to a
smectic A liquid crystal, and the energy density due

w xto deformation may be written in the form 3
2B E u K 2121 2E s y = u q = u , 1Ž . Ž .Ž .d H H22 E z 2

where u is the displacement of layers in the z
direction. The first term is associated with a change

Ž .of interlayer distance Fig. 1a . The shear shown in
Fig. 1b is equivalent, due to rotational invariance, to
reducing the interlayer spacing, an effect taken into
account by the second term in the square brackets.
The second-order elastic constant K is associated1
with splay deformations. As a first case, we consider
a distortion that maintains the planar character of the
slabs but changes the layer spacing, which we denote
by 2 r . The surface energy per unit volume, Ec s

scales as ry1, while the Coulomb energy per unitc
volume, E scales as r 2, and therefore in equilib-C c

Fig. 1. Linear deformations. Cross sections of the slabs and rods
in equilibrium are indicated by full lines, and, after deformation,
by the hatched areas. a: compression perpendicular to the slabs
Ž .rods ; b: shear; c: transverse shear in the columnar phase; the

Ž .primitive translation vectors a , a and their counterparts in the1 2
Ž .reciprocal lattice k , k are also shown.1 2
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elastic properties of the mesomorphic phases and
estimate elastic constants.
We shall concentrate on the phases with rod-like

and slab-like nuclei, since they are expected to be the
w xdominant ones. According to Ref. 9 , these

‘‘spaghetti’’ and ‘‘lasagna’’ phases constitute, re-
1 1spectively, roughly and of the mass lying be-5 2

tween the core and the ordinary solid crust, where
w xnuclei are roughly spherical. In Ref. 11 these pro-

1 1portions are found to be about and . Thus the2 3
fraction of mass in the bubble phases is relatively
small.
As a model, we shall assume uniform rods and

slabs. For symmetric nuclear matter, Thomas–Fermi
w xcalculations 7 have confirmed that these simple

configurations are the thermodynamically favorable
ones. Clearly there is no increase in energy if rods or
slabs are displaced in directions that lie in the plane
of the slabs, or along the rods. Consequently there is
no restoring force for certain sorts of distortion, and
they thus have the elastic properties of liquid crys-
tals. In the ‘‘lasagna’’ and ‘‘spaghetti’’ phases, mi-
croscopic calculations indicate that there is positional
order in one and two directions, respectively, main-
tained by the Coulomb repulsion of rods and slabs
w x4–9 . Accordingly, they conform to the definitions

w xof columnar phases and smectics A 3 . More com-
Žplex positionally ordered phases e.g., smectics C,

.cholesterics are precluded by the symmetry of the
equilibrium shapes of the nuclei. At the temperatures

Ž 8 .of neutron star interiors ;10 K positionally dis-
Ž .ordered nematic phases are unlikely, since one

would expect the ordering temperature of rods and
plates to be comparable with the melting temperature
for matter with spherical nuclei, ;1010 K. We
emphasize, however, that the physical reasons for the
spatial structure of the mesomorphic phases in the
laboratory and in neutron stars are very different. For
laboratory liquid crystals, the non-spherical shape of
the molecules drives the tendency to form rod-like
and slab-like structures, while in neutron stars, it is a
spontaneous symmetry breaking brought about by
the competition between the nuclear surface energy
and the Coulomb energy. In the neutron star case,
the basic objects, nucleons, from which structures
are constructed are spherical, while in laboratory
liquid crystals, the basic ingredients are non-spheri-
cal molecules.

To calculate energies of these phases we adopt a
generalized liquid drop model, with bulk, surface
and Coulomb energies. In the deformations that we
study in this paper we assume that the total density
remains constant. Distortion can lead to a redistribu-
tion of neutrons between nuclear matter and neutron
matter, but this is small because bulk energy densi-
ties are large compared with those of surface and
Coulomb energies. Therefore we may assume that
the fractions of the total volume occupied by nuclear
matter and neutron matter, and their local densities
remain constant, and consequently only the Coulomb
and surface energies are altered.
We begin by estimating the elastic constants for

the layered phase. Since there is complete rotational
symmetry about the axis perpendicular to the layers,
which we denote by Oz, this phase is similar to a
smectic A liquid crystal, and the energy density due

w xto deformation may be written in the form 3
2B E u K 2121 2E s y = u q = u , 1Ž . Ž .Ž .d H H22 E z 2

where u is the displacement of layers in the z
direction. The first term is associated with a change

Ž .of interlayer distance Fig. 1a . The shear shown in
Fig. 1b is equivalent, due to rotational invariance, to
reducing the interlayer spacing, an effect taken into
account by the second term in the square brackets.
The second-order elastic constant K is associated1
with splay deformations. As a first case, we consider
a distortion that maintains the planar character of the
slabs but changes the layer spacing, which we denote
by 2 r . The surface energy per unit volume, Ec s

scales as ry1, while the Coulomb energy per unitc
volume, E scales as r 2, and therefore in equilib-C c

Fig. 1. Linear deformations. Cross sections of the slabs and rods
in equilibrium are indicated by full lines, and, after deformation,
by the hatched areas. a: compression perpendicular to the slabs
Ž .rods ; b: shear; c: transverse shear in the columnar phase; the

Ž .primitive translation vectors a , a and their counterparts in the1 2
Ž .reciprocal lattice k , k are also shown.1 2

shear compression 

compression 
shear 

shear property in slab-like nuclei becomes 
higher order effect! 

    à linear response behaves as fluid 



as a possibility of 26Hz… 

 

•  Oscillation in bubble might be possible to correspond to 26Hz QPO, 
depending on the entrainment rate. 

•  Observational evidence for showing the existence of pasta phase!?  
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Figure 2. Effective shear modulus in the phase of spherical nuclei (µsp) and in the phase of cylindrical nuclei (µcy) is plotted by the
solid and dashed lines, respectively, for the stellar model with 1.4M⊙ and 12 km. The each line corresponds to the case of L = 7.6, 42.6,
and 73.4 MeV from top down, where the value of K0 is fixed to be 230 MeV.

µcy =
2
3
C. (7)

In this paper, we adopt this type of shear modulus in the phase of cylindrical nuclei for the calculation of torsional oscillations.

To estimate the shear modulus µcy at each density, we adopt the value of ECoul at each density obtained when the OI-EOS

is constructed with the Thomas-Fermi model. We remark that ECoul with the liquid drop model is given by

ECoul =
π
2

(ρpRp)2w2

[
ln

(
1

w2

)
− 1 + w2

]
, (8)

where ρp is the charge density inside the nuclei, i.e., ρp ≡ enp with the proton number density inside the nuclei, np, while w2 is

the volume fraction defined as w2 ≡ (Rp/Rc)
2 with the radius of cylindrical nuclei Rp and the unit cell radius Rc (Ravenhall,

Pethick & Wilson 1995).

Additionally, the phase of slab-like nuclei may exist inside the phase of cylindrical phase, depending on the EOS param-

eters. The elastic properties in the phase of slab-like nuclei have been also discussed in de Gennes & Prost (1993); Pethick

& Potekhin (1998), where they showed that the energy-change due to the deformation becomes the higher order effect of the

displacement. That is, the phase of slab-like nuclei behaves as a fluid at least in the linear analysis for the torsional motion.

So, even if the additional pasta phases might exist inside the phase of slab-like nuclei, the torsional oscillations are confined

in the region of spherical and cylindrical nuclei, which can be considered independently of the torsional oscillations in the

region of cylindrical-hole and spherical-hole nuclei (Sotani, Iida & Oyamatsu 2017a).

In such a reason, we can focus on the oscillations only in the region of spherical and cylindrical nuclei, where the

corresponding effective shear modulus is given by Eqs. (4) and (7), respectively. In Fig. 2, we show the effective shear modulus

in the region of spherical and cylindrical nuclei for the stellar model with 1.4M⊙ and 12 km, where the solid and dotted

lines correspond to µsp and µcy. In the figure, the lines from top down correspond to the results for L = 7.6, 42.6, and 73.4

MeV, where the value of K0 is fixed to be 230 MeV. We remark that the shear modulus in the lower density region, which

corresponds to the region from the right edge of horizontal axis up to the stellar surface, agrees with each other. From this

figure, one can observe that the effective shear modulus discontinuously reduces at the phase transition from spherical nuclei

to cylindrical nuclei. Due to the sudden change of the nuclear structure, the shear modulus also discontinuously changes at

the phase transition from the spherical nuclei into the cylindrical nuclei (Araki 2014).

4 TORSIONAL OSCILLATIONS AND COMPARISON WITH QPOS

In order to determine the frequencies of torsional oscillations, we consider a linear analysis on the equilibrium configuration

of neutron star crust. Since the torsional oscillations are an axial type of oscillations, we can safely adopt the relativistic

Cowing approximation, where the metric perturbations are neglected. Owing to the spherically symmetric background, the

oscillations are described with one perturbation variable, i.e., the Lagrangian displacement (Y) of matter element in the φ

direction. With this variable, the perturbation equation is derived by linearizing the relativistic equation of motion, such as

Y ′′ +

[(
4
r

+ Φ′ − Λ′
)

+
µ′

µ

]
Y ′ +

[
H̃
µ

ω2e−2Φ − (ℓ + 2)(ℓ − 1)

r2

]
e2ΛY = 0, (9)

where H̃ is the effective enthalpy given in section 2, the prime denotes the differentiation relative to r, and ω denotes the

eigenfrequencies of torsional oscillations (Schumaker & Thorne 1983). We notice that ω is associated with the frequencies of

torsional oscillations, f , via ω = 2πf . Since we consider the excitation of torsional oscillations inside the phases of spherical

c⃝ 0000 RAS, MNRAS 000, 000–000

spherical 
Strohmayer+91 

cylindrical 
Potekhin+98 

(Strohmayer+ 91)  spherical 

linear response : fluid 
(Landau) 
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à two independent oscillations 
   (i) spherical + cylindrical 
   (ii) cylindrical-hole + bubble à 26Hz? 

µcy =
2
3
ECoul ×10

2.1(w2−0.3)

cylindrical 

ECoul : Coulomb energy per unit volume 
w2 : volume fraction 

(Potekhin+98)	

identification of overtone (?) 
 
 

à additional information 
 1t2 ∼ vs / ΔR

identification of fundamental oscillations 
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Figure 8. The suitable value of L for explaining the QPOs observed in SGR 1900+14 with the crustal torsional oscillations for various
neutron star models with Ns/Nd = 1.0.
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Figure 9. The suitable value of L for simultaneously explaining both of QPOs observed in SGR 1806−20 (except for 26 Hz) and SGR
1900+14 for the neutron star models with M = 1.4−1.8M⊙, R = 10−14 km, and Ns/Nd = 1.0. The painted region denotes the allowed
region of L, with which both of QPOs can be explained.

4.2 The 1st overtones

Next, we examine the properties of the 1st overtones of torsional oscillations, i.e., 1tℓ. The frequencies are considered to

be associated with the crust thickness, ∆R, such as 1tℓ ∝ vs/∆R (Hansen & Cioffi 1980), while ∆R depends on the EOS

parameters (Sotani, Iida & Oyamatsu 2017b). Thus, via the identification of the observed QPO with the overtone of crustal

torsional oscillations, one may be obtain the information about the EOS parameters (Sotani et al. 2012).

In order to find a parameter constructed with K0 and L, with which the frequencies of the 1st overtone are expressed

well, we consider the combination such as (Ki
0L

j)1/(i+j) with integer numbers i and j. Then, we find the suitable combination,

i.e.,

ς = (K4
0L5)1/9. (13)

We remark that the combination of K0 and L in ς is different from that in η defined by η = (K0L
2)1/3, which is good

1.4 1.6 1.850
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70
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80
85
90

M/M!
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eV
)

Ns/Nd = 0

1806-20

1900+1410 km

12 km

14 km

Figure 10. Same as Fig. 9, but with Ns/Nd = 0.

c⃝ 0000 RAS, MNRAS 000, 000–000

-  fundamental oscillations weakly 
depend on the existence of 
cylindrical phase.  

-  all of QPOs except for 26Hz can 
be identified as same as the 
previous calculations. 

6 H. Sotani, K. Iida, & K. Oyamatsu

0 20 40 60 80 10010

20

30

40

L (MeV)

0t
2 (

H
z)

K0 = 180
K0 = 230
K0 = 280
K0 = 360

Ns/Nd = 0

0 20 40 60 80 10010

20

30

40

L (MeV)

0t
2 (

H
z)

K0 = 180
K0 = 230
K0 = 280
K0 = 360

Ns/Nd = 1.0

Figure 3. For the various sets of EOS parameters, the fundamental frequencies of the ℓ = 2 torsional oscillations, 0t2, are plotted as a
function of L for the stellar models with M = 1.4M⊙ and R = 12 km. The left and right panels correspond to the results with Ns/Nd = 0
and 1, respectively. In the both panels, the thick solid line denotes the fitting formula given by Eq. (11), while the dashed line denotes
the relation between 0t2 and L without the effect of the phase of cylindrical nuclei.

and cylindrical nuclei in this paper, we have to impose the boundary conditions at the stellar surface, where the torque should

be zero, and the basis of the phase of cylindrical nuclei, where the traction force should be zero. Both conditions can be

expressed as Y ′ = 0 (Schumaker & Thorne 1983; Sotani, Kokkotas & Stergioulas 2007). Additionally, we have to impose

junction condition at the phase transition from the spherical nuclei to the cylindrical nuclei, which should be the continuous

traction condition, i.e.,

µspY ′ = µcyY ′. (10)

Furthermore, since we can choose an arbitrary amplitude of torsional oscillations in Eq. (9), we adopt that the amplitude at

the stellar surface should be one. Then, the problem to solve becomes an eigenvalue problem with respect to ω. Hereafter, we

use the notation, ntℓ, for expressing the torsional frequencies with the angular index ℓ and the number of radial nodes in the

eigenfunction n.

4.1 Fundamental oscillations

First, we examine the fundamental frequencies of torsional oscillations, i.e., 0tℓ. The similar analysis for the fundamental

crustal torsional oscillations inside the phase of spherical nuclei has been already done (Sotani et al. 2012, 2013a,b; Sotani

2014; Sotani, Iida & Oyamatsu 2016; Sotani 2016), where we have shown that the fundamental frequencies of torsional

oscillations are almost independent of the value of K0. On the other hand, in this paper we calculate the ℓ = 2 fundamental

frequencies excited in the phases of spherical and cylindrical nuclei for the neutron star model with M = 1.4M⊙ and R = 12

km, using various EOS parameters shown in Table 1. The resultant frequencies are shown in Fig. 3 for Ns/Nd = 0 in the left

panel and for Ns/Nd = 1 in the right panel, where the circles, diamonds, squares, and inverted triangles correspond to the

results for K0 = 180, 230, 280, and 360 MeV. From this figure, we confirm that the ℓ = 2 fundamental frequencies excited in

the phases of spherical and cylindrical nuclei are almost independent of the value of K0, whose feature is the same as in the

fundamental torsional oscillations considered in the phase of spherical nuclei. In practice, we find that the dependence of the

ℓ = 2 fundamental frequencies on L can be expressed with the fitting formula, such as

0t2 = c(0)
2 + c(1)

2 L + c(2)
2 L2, (11)

where c(0)
2 , c(1)

2 , and c(2)
2 are arbitrary coefficients. The expectation with this fitting formula is also plotted in Fig. 3 with the

thick solid line. For reference, we also show the expectation of 0t2 considered in the phase of spherical nuclei with the dashed

line. Comparing the thick slid line with the dashed line, we find that the effect of the introduction of the phase of cylindrical

nuclei may not be so significant on the determination of the fundamental frequencies of torsional oscillations.

In addition, we confirm that the dependence of the ℓ-th order fundamental frequencies of torsional oscillations, 0tℓ, on

K0 are very little for the neutron star models with M = 1.4 − 1.8M⊙ and R = 10 − 14 km. Thus, one can generally express

0tℓ as a function of L as

0tℓ = c(0)
ℓ + c(1)

ℓ L + c(2)
ℓ L2, (12)

where c(0)
ℓ , c(1)

ℓ , and c(2)
ℓ are arbitrary coefficients depending on the stellar mass and radius.

Now, we consider to constrain the value of L by comparing the ℓ = 2 fundamental frequencies of torsional oscillations with

the lowest QPO frequency observed in giant flares. In Fig. 4, the expectation of 0t2 for the stellar models with M = 1.4−1.8M⊙

and R = 10−14 km is shown with the painted region, where the left and right panels correspond to the results for Ns/Nd = 0

c⃝ 0000 RAS, MNRAS 000, 000–000
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Figure 11. For the various sets of EOS parameters, the 1st orvertone frequencies of the ℓ = 2 torsional oscillations, 1t2, are plotted as
a function of ς defined by Eq. (13) for the stellar models with M = 1.4M⊙ and R = 12 km. The left and right panels correspond to the
results with Ns/Nd = 0 and 1, respectively. In the both panels, the thick solid line denotes the fitting formula given by Eq. (14).
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Figure 12. The 1st overtones of the ℓ = 2 (solid lines) and 10 (dashed lines) torsional oscillations are shown as a function of ς, where
the lines from top to bottom correspond to the results for the neutron star models with (M, R) = (1.4M⊙, 10 km), (1.6M⊙, 12 km), and
(1.8M⊙, 14 km), and the left and right panels denote the results for Ns/Nd = 0 and 1.

parameter for describing the low-mass neutron stars (Sotani et al. 2014). In Fig. 11, for various EOS parameter sets, the

frequencies of 1st overtone for the neutron star model with M = 1.4M⊙ and R = 12 km are shown as a function of ς, where

the circles, diamonds, squares, and inverted triangles correspond to the results for K0 = 180 230, 280, and 360 MeV, while

the left and right panels denote the results for Ns/Nd = 0 and 1. From this figure, we can derive the fitting formula of the

ℓ = 2 frequencies of the 1st overtone as a quadratic function of ς, such as

1t2 = d(0)
2 + d(1)

2 ς + d(2)
2 ς2, (14)

where d(0)
2 , d(1)

2 , and d(2)
2 are arbitrary coefficients. The expectation of frequencies with Eq. (14) is also plotted in Fig. 11 with

the thick solid line. Additionally, we can confirm that the ℓ-th frequencies of the 1st overtone for various neutrons star models

are also similarly expressed by a function of ς, i.e.,

1tℓ = d(0)
ℓ + d(1)

ℓ ς + d(2)
ℓ ς2, (15)

where d(0)
ℓ , d(1)

ℓ , and d(2)
ℓ are arbitrary coefficients depending on the stellar mass and radius.

Nevertheless, unlike the fundamental torsional oscillations, the frequencies of overtone are almost independent of ℓ (Hansen

& Cioffi 1980), as shown in Fig. 12, where the ℓ = 2 (solid line) and 10 (dashed line) frequencies of the 1st overtone expected

with Eq. (15) are shown for the stellar models with (M, R) = (1.4M⊙, 10 km), (1.6M⊙, 12 km), and (1.8M⊙, 14 km) with

Ns/Nd = 0 (left panel) and 1 (right panel). So, hereafter we focus on only the ℓ = 2 frequencies of the 1st overtone.

Simultaneously, from this figure, one can observe that the frequencies of the 1st overtone strongly depend on the neutron star

models.

Now, we consider to constrain ς by identifying the observed QPO with the 1st overtone of crustal torsional oscillations.

Although most of the QPOs observed in SGR 1806−20 and in SGR 1900+14 are lower than 160 Hz, the 626.5 and 1837 Hz

QPOs are also observed in SGR 1806−20. Such high frequencies may come from not the torsional oscillations but the polar

type oscillations of neutron stars. Even so, assuming that the 626.5 Hz QPO comes from the 1st overtone of crustal torsional

oscillations, we try to constrain the value of ς. In Fig. 13, we show the expectation of 1t2 as a function of ς for the 1.4M⊙

neutron star with Ns/Nd = 1.0 and with R = 10 (solid line), 12 (dotted line), and 14 km (dashed line) together with the 626.5
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Figure 13. Comparing the QPO 626.5 Hz observed in SGR 1806−20 with the 1st overtone frequencies of crustal torsional oscillations
fitted as Eq. (14) for the 1.4M⊙ neutron star models with various radii, where the value of Ns/Nd is adopted to be 1.0.
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Figure 14. The suitable values of ς for explaining the observed QPO 626.5 Hz with the 1st overtone are shown for various neutron star
models with Ns/Nd = 1.0.

Hz QPO observed in SGR 1806−20 (dot-dash-line). From this figure, one can find that the suitable values of ς for identifying

the 626.5 Hz QPO with the 1st overtone of crustal torsional oscillations are ς = 178.5, 149.7, and 107.1 MeV for R = 10, 12,

and 14 km, respectively. In the similar way, the suitable values of ς for identifying the 626.5 Hz QPO with the 1st overtone

of crustal torsional oscillations are shown in Fig. 14 for various neutron star models with Ns/Nd = 1.0.

Moreover, for each neutron star model, the suitable value of L for explaining the QPOs observed in SGR 1806−20 except

for 26 Hz are already fixed as shown in Fig. 6. With this constraint on L together with the constraint on ς as shown in Fig. 14,

we can get the constraint on K0 for each neutron star model via K0 = (ς9/L5)1/4, which is plotted in Fig. 15. On the other

hand, the value of K0 is constrained via the terrestrial nuclear experiments, i.e., K0 = 230 ± 40 MeV (Khan & Margueron

2013). This constraint on K0 is also shown with the painted region in the same figure. Therefore, the neutron star model, with

which the QPOs observed in SGR 1806−20 can be identified by the fundamental frequencies and the 1st overtone of crustal

torsional oscillations, would be better to be low-mass neutron star with relatively larger radius, such as M ≃ 1.4 − 1.5M⊙

for the neutron star model with R = 14 km, or maybe M ≃ 1.3 − 1.4M⊙ for the neutron star model with R = 13 km. The

similar result can also be obtained even for the case with Ns/Nd = 0 as shown in Fig. 16. If this constraint on the neutron

star model would be accepted, from Figs. 9 and 10, we may obtain the further constraint on L. That is, L should be around

61 − 70 MeV for Ns/Nd = 1.0, while L is around 58 − 68 MeV for Ns/Nd = 0. Thus, considering an uncertainty of the value

of Ns/Nd inside the phase of cylindrical nuclei, we derive the constraint on L as L ≃ 58 − 70 MeV for explaining the QPOs

observed in SGRs with the crustal torsional oscillations. We remark that, in any way, the 26 Hz QPO should be explained by

the oscillations in the phases of cylindrical-hole and spherical-hole nuclei.

5 CONCLUSION

We systematically calculate the torsional oscillations excited in the region composed of the spherical and cylindrical nuclei,

as varying the neutron star mass, radius, and the entrainment ratio of neutron superfluidity in the phase of cylindrical nuclei.

Owing to the nature that the elastic properties in the slab-like nuclei behave like fluid against the linear perturbation, we

can solely consider the torsional oscillations inside the phases of spherical and cylindrical nuclei. As a result, now we can

discuss the properties of overtones as well as the fundamental torsional oscillations. First, we can find that the fundamental
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models with Ns/Nd = 1.0. The painted region denotes the constraint on K0 obtained from the terrestrial nuclear experiments (Khan &
Margueron 2013).
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Figure 16. Same as Fig. 15, but with Ns/Nd = 0.

frequencies are more or less similar to the results as in the previous our studies, where we considered the torsional oscillations

inside the phase of spherical nuclei. In practice, the fundamental frequencies can be expressed as a quadratic function of the

slope parameter of the nuclear symmetry energy L independently of the incompressibility of symmetric nuclear matter K0

for each neutron star model. By identifying the low-lying QPOs observed in SGR 1806−20 except for the 26 Hz QPO and

in SGR 1900+14, we can obtain the constraint on L as L = 54.3 − 85.0 MeV even taking into account an uncertainty of the

entrainment ratio of neutron superfluidity in the phase of cylindrical nuclei.

Meanwhile, we confirm that the 1st overtones are almost independent of the angular index ℓ for each neutron star model.

Additionally, we succeed to find the suitable combination of L and K0 for expressing the 1st overtones, which is a new

parameter defined as ς ≡ (K4
0L5)1/9 in units of MeV. In fact, the 1st overtones can be expressed as a quadratic function of ς.

Then, assuming that the 626.5 Hz QPO observed in SGR 1806−20 is identified by the 1st overtone, we consider to constrain the

value of ς. Furthermore, adopting the constraint on L obtained from the identification of the low-laying observed QPOs with

the fundamental torsional oscillations, the constraint on ς can be converted into the constraint on K0. Since the constrained

region of K0 is larger than that obtained from the terrestrial nuclear experiments, we can constrain the neutron star model for

explaining the observed QPOs by the crustal torsional oscillations. Actually, the low-mass neutron star with relatively larger

radius may be favored in this scenario. With these constraints on the neutron star models, finally we can derive the further

constraints on L, i.e., L ≃ 58− 70 MeV, even considering an uncertainty of the value of Ns/Nd inside the phase of cylindrical

nuclei. In any way, in our scenario, the 26 Hz QPO should be explained by additional oscillation mechanism. Maybe, this

additional mechanism is the torsional oscillations excited inside the phases composed of cylindrical-hole and spherical-hole

nuclei.
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4.2 The 1st overtones

Next, we examine the properties of the 1st overtones of torsional oscillations, i.e., 1tℓ. The frequencies are considered to

be associated with the crust thickness, ∆R, such as 1tℓ ∝ vs/∆R (Hansen & Cioffi 1980), while ∆R depends on the EOS

parameters (Sotani, Iida & Oyamatsu 2017b). Thus, via the identification of the observed QPO with the overtone of crustal

torsional oscillations, one may be obtain the information about the EOS parameters (Sotani et al. 2012).

In order to find a parameter constructed with K0 and L, with which the frequencies of the 1st overtone are expressed

well, we consider the combination such as (Ki
0L

j)1/(i+j) with integer numbers i and j. Then, we find the suitable combination,

i.e.,

ς = (K4
0L5)1/9. (13)

We remark that the combination of K0 and L in ς is different from that in η defined by η = (K0L
2)1/3, which is good
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Figure 10. Same as Fig. 9, but with Ns/Nd = 0.
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common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Théor. 44, 263–292 (1986).

15. Freire, P.C.C.&Wex,N.Theorthometricparameterisationof theShapiro delay and
an improved test of general relativity with binary pulsars. Mon. Not. R. Astron. Soc.
(in the press).

16. Iben, I. Jr & Tutukov, A. V. On the evolution of close binaries with components of
initial mass between 3 solar masses and 12 solar masses. Astrophys. J Suppl. Ser.
58, 661–710 (1985).
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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constraints on L 

 

•  26Hz : bubble (0t2), 626.5Hz : spherical + cylindrical (1t2) 
à SGR1806-20 should be relatively low mass NS (M~1.2-1.4M⊙, R~13km??) 
à L ~ 58-73MeV 
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2 W. G. Newton et al.: Constraints on the symmetry energy from observational probes of the neutron star crust

Fig. 1. (Color online) Recent constraints on the slope of the symmetry energy L from analysis of terrestrial experiments and astrophysical
observations, some of which can be found summarized in this issue. Taken from [10]. The community average L ⇡ 60 MeV should be taken
only as guide to the favored values of L that emerge from the wide variety of experimental evidence.

trons, protons and nucleons in the system. For uniform nuclear
matter, both parameters � and I are identical. Nuclear matter
with equal numbers of neutrons and protons (� = 0) is referred
to as symmetric nuclear matter (SNM); nuclear matter with
� = 1 is naturally referred to as pure neutron matter (PNM).
Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇢

0

⇡ 2.6 ⇥ 10

14

g cm�3 ⌘ 0.16 fm�3

= n

0

. Nuclear experiments tend to con-
strain the behavior of the binding energy of symmetric nuclear
matter, E(n ⇠ n

0

, � ⇠ 0) to within relatively tight ranges,
but direct ab initio calculations there are extremely difficult. In
contrast, experimental data directly probing E(n ⇠ n

0

, � ⇠ 1)

is impossible, but state-of-the-art ab initio calculations of PNM
have led to significant constraints on E(n < n

0

, � ⇠ 1). By ex-
panding E(n, �) about � = 0,

E(n, �) = E

0

(n) + S(n)�

2

+ ..., (1)

we can define a useful quantity called the symmetry energy

S(n) =

1

2

@

2

E(n, �)

@�

2

����
�=0

, (2)

which encodes the change in the energy per particle of nuclear
matter as one moves away from isospin symmetry. This allows
extrapolation to the highly isospin asymmetric conditions in
neutron stars. The simplest such extrapolation, referred to as
the parabolic approximation (PA) gives the relation

E

PNM

(n) ⇡ E

0

(n) + S(n). (3)

Since our experimental constraints are dominated by results
from densities close to n

0

, it is customary to expand the sym-
metry energy about � = 0 where � =

n�n0
3n0

, thus obtaining

S(n) = J + L�+

1

2

K

sym

�

2

+ ..., (4)

where J , L and K

sym

are the symmetry energy, its slope and
its curvature at saturation density. The true values of the higher
order symmetry energy parameters L, K

sym

, ... are still some-
what uncertain, and the measurement of L in particular has
been the subject of an intense experimental campaign by the
nuclear physics community in recent years using nuclear probes
such as masses, neutron skins, nuclear electric dipole polariz-
ability, collective motion and the dynamics of heavy ion colli-
sions (see, e.g.[1,2,3] for recent summaries). Ab initio calcu-
lations of PNM with well defined theoretical errors offer ad-
ditional constraints on J and L [4,5,6,7,8]. Both theory and
experiment are generally in broad agreement that L falls in the
rather loose range 30 . L . 80 MeV, although higher values
in particular are not completely ruled out [9]. Fig. 1 shows a
selection of experimental constraints on L, together with con-
straints inferred from astrophysical observation, some of which
will be discussed in this review [10].

Since neutron star matter contains a low fraction of pro-
tons, many inner crust and global stellar properties are sensi-
tive to the symmetry energy parameters. To give a classic ex-
ample, the pressure of PNM at saturation density is given in
the parabolic approximation by P

PNM

(n

0

)=n
0

L/3. The pres-
sure at the crust-core boundary and in the outer core is domi-
nated by neutron pressure so a strong correlation should exist
between the pressure in neutron stars near saturation density
and L. Neutron star EOSs which have higher pressures at a
particular density are often referred to as ‘stiff’; lower pressure
EOSs are referred to as ‘soft’. Thus ‘stiff’ EOSs at saturation
density are associated with high values of L and ‘soft’ EOSs
with low values of L. This fact leads to a strong correlation be-
tween the radii of neutron stars and the slope of the symmetry
energy near saturation density [11].

The crust of a neutron star is divided into two layers; the
outer crust and inner crust. The microscopic structure of the
crust is a crustal lattice of nuclei. The nuclei become increas-
ingly more massive and neutron-rich with depth, immersed in

Li et al. (2013) 

HS+	18	

40 ⪅ L ⪅ 80 MeV 

12 



summary 

•  QPOs in SGR could be strongly associated with the NS oscillations.  

•  taking into account the effect of pasta structure, we calculate the 
crustal torsional oscillations 

–  spherical + cylindrical nuclei phase 

•  constraint on L is almost independent of the existence of pasta 

•  Identifying the 626.5Hz QPO with the overtone, we can obtain a 
new constraint on 

–  together with the constraint on L, we obtain the constraint on K0  

–  considering the terrestrial constraint on K0, we find  

•  SGR1806-20 should be relatively low mass NS  
(M~1.2-1.4M⊙(13km), ~1.4-1.5M⊙(14km)) 

•  L ~ 58-73MeV 
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ς = (K0
4L5 )1/9
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