Crustal torsional oscillations and nuclear saturation parameters

Hajime SOTANI (NAOJ)

K. lida (Kochi univ.)

K. Oyamatsu (Aichi Shukutoku Univ.)

QPOs in SGRs

- Quasi-periodic oscillations (QPOs) in afterglow of giant flares from softgamma repeaters (SGRs)
 - SGR 0526-66 $(5^{th}/3/1979)$: 43 Hz
 - SGR 1900+14 (27th/8/1998): 28, 54, 84, 155 Hz
 - SGR 1806-20 (27th/12/2004): 18, 26, 30, 92.5, 150, 626.5, 1837 Hz

(Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06)

- additional QPO in SGR 1806-20 is found : 57Hz (Huppenkothen + 2014)

- Crustal torsional oscillation ?
- Magnetic oscillations ?

CUSTIPEN-Xiamen@Xiamen

torsional oscillations

- axial parity oscillations
 - incompressible
 - no density perturbations (less associated with GWs)
- in Newtonian case

(Hansen & Cioff 1980)

$$_{\ell}t_0 \sim \frac{\sqrt{\ell(\ell+1)\mu/\rho}}{2\pi R} \sim 16\sqrt{\ell(\ell+1)} \text{ Hz} \quad _{\ell}t_n \sim \frac{\sqrt{\mu/\rho}}{2\Delta r} \sim 500 \times n \text{ Hz}$$

- μ : shear modulus
- frequencies \propto shear velocity $v_s = \sqrt{\mu / \rho}$
- overtones depend on crust thickness
- torsional oscillations independently of core EOS
 - by integrating from the surface with $(\ensuremath{\mathsf{M}},\ensuremath{\mathsf{R}})$

EOS near the saturation point

• Bulk energy per nucleon near the saturation point of symmetric nuclear matter at zero temperature;

- with larger L, pasta phase becomes narrower
 - For $L \gtrsim 100$ MeV, pasta structure almost disappears.

elastic properties in pasta

as a possibility of 26Hz...

- Oscillation in bubble might be possible to correspond to 26Hz QPO, depending on the entrainment rate.
- Observational evidence for showing the existence of pasta phase!?

effect of pasta structure

HS+ 18

1st overtone

HS+ 18

- frequencies of 1^{st} overtone depend on $K_0 \& L$
- we find the good combination of K₀ & L for expressing the 1st overtone frequencies. $\zeta = (K_0^{-4}L^5)^{1/9}$

constraints on L

• 26Hz : bubble $(_{0}t_{2})$, 626.5Hz : spherical + cylindrical $(_{1}t_{2})$ \rightarrow SGR 1806-20 should be relatively low mass NS (M~1.2-1.4M₀, R~13km??) \rightarrow L ~ 58-73MeV

summary

- QPOs in SGR could be strongly associated with the NS oscillations.
- taking into account the effect of pasta structure, we calculate the crustal torsional oscillations
 - spherical + cylindrical nuclei phase
- constraint on L is almost independent of the existence of pasta
- Identifying the 626.5Hz QPO with the overtone, we can obtain a new constraint on ${\cal G}=(K_0^{-4}L^5)^{1/9}$
 - together with the constraint on L, we obtain the constraint on $K_{\rm o}$
 - considering the terrestrial constraint on K_0 , we find
 - SGR1806-20 should be relatively low mass NS $(M\sim 1.2-1.4 M_{\odot}(13 \text{km}), \sim 1.4-1.5 M_{\odot}(14 \text{km}))$
 - L ~ 58-73MeV