Neutron star equation of state for the quark level in the light of GW170817

Ang Li 李昂

Department of Astronomy, Xiamen Univ. liang@xmu.edu.cn

Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy, Xiamen, Jan 3-7, 2019

First Cosmic Event Observed in Gravitational Waves and Light

In this talk

- Introduction
- Equation of state (EOS) from quark level in the light of GW170817
- Summary and outlook

- Phase diagram at (T~0, µ≠0) is not achievable from HIC (experiment), LQCD (simulation) or pQCD (first-principle theory), but it is important for NS/QS:
 Model calculations.
- EOS uncertainty from QCD phase uncertainty and model uncertainty
 - Hyperon **puzzle**; $\Delta(1232)$ /hyperon/Kaon/quark **complication**
 - 1) Self-consistency from one nuclear force for core & crust; 2) High-density extrapolation

First Cosmic Event Observed in Gravitational Waves and Light

► GW

Pre-merger: Tidal deformability (≤ 800) Postmerger: Hopefully O5 (202X) ?!

https://stellarcollapse.org/nsmasses

 M_{TOV} ; $\Lambda(1.4)$ *QM stability window

Zhou, Zhou & **AL***, 1711.04312, PRD ⁵

► NS/QS two-branch picture?

No hyperon puzzle for QS; Preferred by particular group of SGRB (e.g., AL et al., 1706.04720, ApJ; 1606.02934, PRD)

- ► QS merger scenario for GW demonstrated. (e.g., Zhou, Zhou & AL*, 1711.04312, PRD)
- M_{TOV} ≤ 2.18 (2.32 with superfluid) for QS within MIT.

- New 'QMF18' from the quark level
- ► BH: R>2GM/c²
- ► P<∞: R>(9/4)GM/c²
- ► Causality: $c \ge v_s$ or $R \ge 2.9 GM/c^2$
- ► Nucleon (m_N, r_N)
- Nuclear saturation (rho₀, E/A, K, E_{sym}, L, M_N*)
- Heavy pulsar mass measurements around 2 solar mass
- Clean/robust GW170817 constraint of tidal deformability

R |
m km|

 $R_{1.6} \ge 10.68$ km (Bauswein, et al)

 $R_{16} \leq 13.25 \text{ km}$ (Fattoyev, et al.)

= 9.9-13.6 km (Annala et al.)

Zhu, Zhou & AL* 1802.05510, ApJ

Supernovae

Heavy ion collision experiments

Observed properties of nuclear matter at saturation and beyond

Nuclear many-body theory

Pulsar: $M_{TOV} \gtrsim 2.0$ GW: $A_{1.4} \lesssim 800$ ► NS EOS model from the quark level within QMF (m_{q} ~300MeV)

Step 1: Single nucleon

 $[\gamma^0(\epsilon_q - g_{\omega q}\omega - \tau_{3q}g_{\rho q}\rho) - \vec{\gamma} \cdot \vec{p} - (m_q - g_{\sigma q}\sigma) - U(r)]\psi_q(\vec{r}) = 0$

 $U(r) = \frac{1}{2}(1+\gamma^{0})(ar^{2}+V_{0}) \qquad V_{0} = -62.257187 \text{ MeV} \qquad \qquad M_{N} = 939 \text{ MeV}$ $a = 0.534296 \text{ fm}^{-3} \qquad \qquad M_{N} = 939 \text{ MeV}$ $r_{N} = 0.87 \text{ fm}.$

Step 2: Nucleon many-body system

$$\mathcal{L} = \overline{\psi} \left(i\gamma_{\mu} \partial^{\mu} - M_{N}^{*} - g_{\omega N} \omega \gamma^{0} - g_{\rho N} \rho \tau_{3} \gamma^{0} \right) \psi - \frac{1}{2} (\nabla \sigma)^{2} - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{2} \sigma^{3} - \frac{1}{4} g_{3} \sigma^{4} + \frac{1}{2} (\nabla \rho)^{2} + \frac{1}{2} m_{\rho}^{2} \rho^{2} + \frac{1}{2} (\nabla \omega)^{2} + \frac{1}{2} m_{\omega}^{2} \omega^{2} + \frac{1}{2} g_{\rho N}^{2} \rho^{2} \Lambda_{v} g_{\omega N}^{2} \omega^{2},$$

	$L \; [{\rm MeV}]$	$g_{\sigma q}$	g_ω	q	$g_{ ho q}$	$g_2 \; [{\rm fm}^{-1}]$	g_3	Λ_v
► K= 240 ±20	20	3.8620366	2.9174	4838 6.	.9588083	14.6179599	-66.3442468	1.1080665
(Colo et al. 2014)	40	3.8620366	2.9174	4838 5.	.4129448	14.6179599	-66.3442468	0.7693664
E _{svm} = 31.6 ±2.66	60	3.8620366	2.9174	4838 4.	.5830609	14.6179599	-66.3442468	0.4306662
L=58.9±16	80	3.8620366	2.9174	4838 4.	.0459574	14.6179599	-66.3442468	0.0919661
(Li & Han 2013)			$ ho_0$	E/A	K	$E_{\rm sym}$	L	M_N^*/M_N
$1 \gtrsim 20$ (Centelles et al		[f	m^{-3}]	[MeV]	[MeV]	[MeV]	[MeV]	/
2009)	-		0.16	-16	240	31	20/40/60/80	0.77
I ≲ 170 (Cozma 2013)							9

• Equations of state $E(\rho, \delta) \approx E_0(\rho) + E_{sym}(\rho)\delta^2$

Among them, the L = 40 MeV case comfortably inside all exp. boundaries.

Experimental constraints (e.g.,): Danielewicz et al. 2002

Tsang et al. 2009 Zhang & Chen 2015 Danielewicz & Lee 2014 • Mass-radius relation, $\Lambda(1.4)$

Zhu, Zhou & **AL*** 1802.05510, ApJ ¹¹

Table 3. NS EOS for the QMF18 model newly introduced in this work.

$\epsilon [\mathrm{g} \mathrm{cm}^{-3}]$	$P [\mathrm{erg} \ \mathrm{cm}^{-3}]$	$\rho_N ~[{\rm fm}^{-3}]$
$0.13855E{+}15$	0.79586E + 33	0.082
$0.14365E{+}15$	0.85234E + 33	0.085
$0.15216E{+}15$	0.95144E + 33	0.090
$0.16920 \mathrm{E}{+15}$	0.11706E + 34	0.100
0.18626E + 15	0.14226E + 34	0.110
0.20336E + 15	0.17145E + 34	0.120
0.22047E + 15	0.20433E + 34	0.130
$0.27203E{+}15$	0.33950E + 34	0.160
0.32393E + 15	0.55426E + 34	0.190
0.37631E + 15	0.87679E + 34	0.220
0.42926E + 15	0.13315E + 35	0.250
0.48293E + 15	0.19385E + 35	0.280
0.53741E + 15	0.27149E + 35	0.310
0.59282E + 15	0.36752E + 35	0.340
0.64927E + 15	0.48329E + 35	0.370
0.70686E + 15	0.62008E + 35	0.400
$0.76568E{+}15$	0.77912E + 35	0.430
$0.82583E{+}15$	0.96151E + 35	0.460
0.88738E + 15	0.11682E + 36	0.490
$0.95043E{+}15$	0.13999E + 36	0.520
0.10150E + 16	0.16569E + 36	0.550
0.10813E + 16	0.19389E + 36	0.580
0.11492E + 16	0.22449E + 36	0.610
0.12189E + 16	0.25733E + 36	0.640
0.12904E + 16	0.29223E + 36	0.670
0.13636E + 16	0.32903E + 36	0.700
0.14896E + 16	0.39423E + 36	0.750
0.16207E + 16	0.46399E + 36	0.800
$0.17568E{+}16$	0.53809E + 36	0.850
0.18978E + 16	0.61645E + 36	0.900
0.20438E + 16	0.69900E + 36	0.950
0.21948E + 16	0.78573E + 36	1.000
0.25116E + 16	0.97160E + 36	1.100
$0.28480 \mathrm{E}{+16}$	0.11739E + 37	1.200
0.32039E + 16	0.13926E + 37	1.300

"QMF18" EOS table Welcome to use!

Zhu, Zhou & *AL** 1802.05510, *ApJ* ¹²

First Cosmic Event Observed in Gravitational Waves and Light

In this talk,

 New NS EOS "QMF18" proposed in the quark level in the GW era; Future:

- Unified (crust+core) NS EoS from quark level;
- Hybrid star and mixed phase;
- More quantitative results for EOS from GW tidal results.

ZLIGO

Unified (crust+core) NS EoS from quark level

Core (nuclear matter)

- Green's Function Monte Carlo
- Chiral Perturbation Theory (ChPT)
- Variational Many-Body (VMB; e.g., APR)
- V_{lowk} + Renormalization Group Brueckner-Hartree-Fock (BHF, e.g., BCPM)
- Dirac-Brueckner-Hannee-Fock (DBHF)
- Quark mean-field (QMF; e.g., QMF18)
- Quark Meson Coupling (QMC)
- Relativistic mean-field (RMF; e.g., DD2, NL2 YM1)
- Skyrme energy density functional (e.g., BSk20, Sly)

Inner crust:

- Compressible Liquid Drop (CLDM)
- Thomas-Fermi (TF) approximation

14

$$\Lambda = \frac{2}{3}k_2(M/R)^{-5}$$

- Λ is normalized with a factor of R^5 , from k_2
- ► Differences in radius scatter the dependence on *L*.

Zhu, Zhou & **AL*** 1802.05510, ApJ

► NO L-vs-Λ correlation found, despite good L-vs-R correlation:
Λ measurements do NOT necessarily translate into info. on R?!

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

From EoS (with strangeness) to Λ

]				
	QMF18	DDRHF	$DDRHF\Delta$	$NL3\omega\rho$	DDME2	DD2	Sly9	BCPM
$M_{\rm TOV} [M_{\odot}]$	2.08	2.50	2.24	2.75	2.48	2.42	2.16	1.98
$L [{\rm MeV}]$	40	82.99	82.99	55.5	51.2	55.0	54.9	52.96
R(1.4) [km]	11.77	13.74	13.67	13.75	13.21	13.16	12.46	11.72
M/R(1.4)	0.1756	0.1505	0.1512	0.1503	0.1566	0.1571	0.1660	0.1765
$\Lambda(1.4)$	344	865	828	925	681	674	446	294
$ ilde{\Lambda}$	397.7 - 403.7	948.7 - 993.4	900.8 - 962.9	1002.9 - 1056.3	747.8 - 782.7	747.9 - 777.3	519.6 - 524.3	353.9 - 1056.3

Zhu, Zhou & AL* 1802.05510, ApJ

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

Hybrid star and mixed phase

$$p \longleftrightarrow 2u + d,$$
$$n \longleftrightarrow u + 2d,$$
$$u + d \longleftrightarrow u + s,$$

$$P_N = P_q$$
 (mechanical),
 $\mu_N = \mu_q$ (chemical),
 $T_N = T_q \equiv T$ (thermodynamical)

Thank you.

AL, Hu, Bao, Shen, Xu, Nucl. Phys. Rev. 2019