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We now have several accreting neutron
stars that have been observed to cool over
months to years after accretion turns off
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e overview of crust cooling

e thermal conductivity / impurity level of the crust
e fitting multiple outbursts

* physics of the inner crust

* core heat capacity and neutrino emissivity

* magnetar outbursts



Using transient events to constrain neutron star interiors

Lots of progress on neutron star masses and radius:
e >2 solar mass neutron stars
* tidal deformability in mergers
* NICER radius measurement
* moment of inertia

Studying the response of the star to a transient event provides a way to
go “beyond the EOS” to constrain things like:

* the state of matter (superfluidity)

e particle content

* transport properties

Many different types of transient events:
e cooling from birth
* mergers
e glitches
* magnetar outbursts
e cooling after accretion outbursts



Accreting neutron stars as nuclear physics laboratories
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Crust cooling: different timescales probe different depths

outer crust inner crust
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Crust cooling: different timescales probe different depths
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cooling curve tells us the temperature profile L(r) < T(p)
at the end of the accretion outburst

Brown & Cumming (2009)



Observed cooling curves
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1. Thermal conductivity of the crust

The cooling timescale => crust has to be relatively pure: not amorphous

Impurity parameter  Qimp = 4, Z n(Z; —=<{2)" is <10

[

Smaller than expected: Qimp ~ 100 in rp-process ashes
Qimp ~ Z2 ~ 1000 for amorphous solid
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1. Thermal conductivity of the crust
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Nuclear processing of the mixture leads to reduced Qimp in the inner crust
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Fits to MXB 1659-29 with self-consistent nuclear EOS for core and crust
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in principle both axes can be calculated from nuclear physics !



The impurity parameter formalism for thermal conductivity assumes a low level of
uncorrelated impurities in a majority lattice. Taking into account correlations between
difference species gives a modified “effective impurity parameter”

éimp = L Qimp Roggero & Reddy (2016)
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2. Fitting multiple sources and outbursts: shallow heating

Can fit all sources with common crust model, but with a caveat: introduce an
unknown source of shallow heating to heat the outer layers of the crust
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2. Fitting multiple sources and outbursts: shallow heating

Can fit all sources with common crust model, but with a caveat: introduce an
unknown source of shallow heating to heat the outer layers of the crust

The shallow heat source is needed to explain the early time temperatures
Typical values are ~1 MeV per accreted nucleon

One source MAXI J0556-332 needs ~ 10 MeV per accreted nucleon for one
outburst
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unknown source of shallow heating to heat the outer layers of the crust

The shallow heat source is needed to explain the early time temperatures
Typical values are ~1 MeV per accreted nucleon

One source MAXI J0556-332 needs ~ 10 MeV per accreted nucleon for one
outburst

Amount or depth of shallow heating is usually different between outbursts
from the same source or between sources with similar outbursts



2. Fitting multiple sources and outbursts: shallow heating

Can fit all sources with common crust model, but with a caveat: introduce an
unknown source of shallow heating to heat the outer layers of the crust

The shallow heat source is heeded to explain the early time temperatures
Typical values are ~1 MeV per accreted nucleon
One source MAXI J0556-332 needs ~ 10 MeV per accreted nucleon for one

outburst

Amount or depth of shallow heating is usually different between outbursts
from the same source or between sources with similar outbursts

Physical mechanism: UNKNOWN!
Energy of 10 MeV rules out nuclear ,

Plenty of energy in incoming gas (GM/R~100 MeV per
nucleon), could be related shear between the star and the

accretion disk (Inogamov & Sunyaev 2008)
Challenge is to deposit this energy so deep in the envelope )

(at densities ~ 10° g/cm3)

Vo



3. Late time cooling: inner crust properties

The cooling timescale of the inner crust

can be much longer if:

- there are normal neutrons at the
base of the crust (gap closes before
the crust/core transition)

- the thermal conductivity is low at the

base of the crust (pasta?)
Pons et al. 2013; Horowitz et al. 2015
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4. Core physics: heat capacity and neutrino emissivity

See talk by E. Brown

Modeling the outburst decay gives us confidence we understand the
temperature profile in the crust and energy flowing into the core during

outburst.
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5. Another class of cooling transients: magnetars

Magnetar outbursts are often well-fit with crust cooling models; shape of
the light curve is naturally reproduced

Many more sources (>20), outbursts can recur frequently, high cadence of
observations

Open questions:

e Heating profile is not known (something we would like to learn about)

* Spectral behaviour doesn’t always look like cooling, e.g. fairly constant
Terf but shrinking emitting area

e Contribution from magnetospheric emission can be significant and
difficult to model



SGR 1627-41

An et al. 2012, Deibel et al. 2016, An et al. 2017
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- energy in outer crust differs by an order of magnitude between
outbursts, but is similar for the inner crust
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The Galactic centre magnetar SGR J1745-2900 can be fit only if
neutrino emission is turned off!
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Do we understand plasmon neutrino emission in strong B?
Kennett and Melrose (1998); Yakovlev et al (2001)



Summary

We now have several sources that have been observed to cool into
quiescence, some with multiple outbursts

Thermal conductivity is generally consistent with Qimp ~ O(1), limited
by the fact that we don’t know M and R.

The inferred values of Qimp are consistent with calculations of nuclear
processing through neutron drip

Major unsolved question is origin of shallow heating

Deep crust: does the neutron gap close before the crust/core
boundary; does the pasta layer have a low thermal conductivity? If so,
the cooling of the inner crust can be slow enough to see it!
Magnetars: a promising new sample of sources to study. Lightcurve
shapes are naturally matched by crust cooling models but need to
understand what’s going on with the spectra

May be worth revisiting neutrino emissivities (plasmon) with strong
magnetic fields



