P. Danielewicz^{1,2}, J. Lee³, P. Singh^{1,4} and Y. Cianyi^{2,5}

¹Michigan State U, ²African Inst f/Mathematical Sciences, ³U of Hong Kong, ⁴Deenbandhu Chhotu Ram U Science & Techn and ⁵U of Kinshasa

Xiamen-CUSTIPEN Workshop on the EOS of Dense Matter in the Era of Gravitational Wave Astronomy

January 3-7, 2019, Xiamen, China

Aura

Historically Kirlian Photography

Nucleus

Introduction 000000

Charge Symmetry & Charge Invariance

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity F does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth F, yields even terms only:

$$F(\eta) = F_0 + F_2 \, \eta^2 + F_4 \, \eta^4 + \dots$$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only:

$$G(\eta) = G_1 \, \eta + G_3 \, \eta^3 + \dots$$

Note: $G/\eta = G_1 + G_3 \eta^2 + \dots$

In nuclear practice, analyticity requires shell-effect averaging!

Charge invariance: invariance of nuclear interactions under rotations in *n-p* space. Isospin $\vec{T} = \sum_{i=1}^{A} \vec{\tau}_i$ SU(2)

Isovector Aura **Danielewicz**

Charge Symmetry & Charge Invariance

Charge symmetry: $n \leftrightarrow p$ invariance

Charge invariance: symmetry under rotations in

n-p space

Isospin doublets

$$\boldsymbol{\rho}: (\tau, \tau_{\boldsymbol{z}}) = (\frac{1}{2}, \frac{1}{2})$$

$$n:(\tau,\tau_z)=(\frac{1}{2},-\frac{1}{2})$$

Net isospin

$$\vec{T} = \sum_{i=1}^{A} \vec{\tau}_i$$

Isobars: Nuclei with the same A

 $T = \frac{3}{2}, \dots$ $T = \frac{1}{2}, \frac{3}{2}, \dots$ $T = \frac{3}{2}$

Nuclear states: (T, T_z) , $T \ge |T_z| = \frac{1}{2}|N - Z|$

Charge symmetry:

 $n \leftrightarrow p$ invariance

Charge invariance: symmetry under rotations in n-p space Isospin doublets

$$p:(\tau,\tau_z)=(\frac{1}{2},\frac{1}{2})$$

$$n:(\tau,\tau_z)=(\frac{1}{2},-\frac{1}{2})$$

$$\vec{T} = \sum_{i=1}^{A} \vec{\tau}_i$$

Isobars: Nuclei with the same A

Introduction 000000

Z=5

Charge Symmetry & Charge Invariance

Charge symmetry: $n \leftrightarrow p$ invariance

Charge invariance:

symmetry under rotations in n-p space Isospin doublets

$$p:(\tau,\tau_z)=(\frac{1}{2},\frac{1}{2})$$

$$n:(\tau,\tau_z)=(\frac{1}{2},-\frac{1}{2})$$

Net isospin

$$\vec{T} = \sum_{i=1}^{A} \vec{\tau}_i$$

Isobars: Nuclei with the same A

$$T = \frac{3}{2}, \dots$$
 $T = \frac{1}{2}, \frac{3}{2}, \dots$ $T = \frac{3}{2}, \dots$

$$T=\frac{3}{2},\dots$$

Z=5

Nuclear states: (T, T_z) , $T \ge |T_z| = \frac{1}{2}|N - Z|$

Introduction 000000

Examples: Nuclear Energy, Densities

$$\frac{E}{A}(\rho_{n},\rho_{p}) = \frac{E_{0}}{A}(\rho) + S(\rho) \left(\frac{\rho_{n} - \rho_{p}}{\rho}\right)^{2} + \mathcal{O}(\dots^{4})$$

Introduction

000000

$$S(\rho) = S(\rho_0) + \frac{L}{3} \frac{\rho - \rho_0}{\rho_0} + \dots$$

Unknown: $S(\rho_0)$? (a)symmetry energy

$$\rho = \rho_n + \rho_p$$

Net
$$\rho = \rho_n + \rho_p$$
 isoscalar
Difference $\rho_n - \rho_p$ isovector
 $\rho_a = \frac{A}{N-Z} (\rho_n - \rho_p)$ isoscalar

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{N-Z}{A} \, \rho_a(r) \right]$$

Energy min in Thomas-Fermi:

$$ho_{a}(r) \propto rac{
ho(r)}{S(
ho(r))}$$

low $S \Leftrightarrow \text{high } \rho_{A}$

Danielewicz Isovector Aura

Stiffness of EOS & Mass & Radius of *n*-Star

$$egin{aligned} rac{E}{A} &= rac{E_0}{A}(
ho) + S(
ho) \left(rac{
ho_n -
ho_p}{
ho}
ight)^2 \ S &\simeq a_a^V + rac{L}{3}rac{
ho -
ho_0}{
ho_0} \end{aligned}$$

In neutron matter:

$$\rho_{p} \approx 0 \& \rho_{n} \approx \rho.$$

Then,
$$\frac{E}{A}(\rho) \approx \frac{E_0}{A}(\rho) + S(\rho)$$

Pressure:

Introduction

000000

$$P =
ho^2 rac{\mathsf{d}}{\mathsf{d}
ho} rac{E}{A} \simeq
ho^2 rac{\mathsf{d} S}{\mathsf{d}
ho} \simeq rac{L}{3
ho_0}
ho^2$$

Schematic Calculation by Stephen Portillo (Harvard U)

Stiffer symmetry energy correlates with larger max mass of neutron star & larger radii

Isovector Aura Danielewicz

 ρ_a & $S(\rho)$ Results f/different Skyrme ints in half-∞ matter PD&Lee NPA818(09)36

Isoscalar ($\rho = \rho_n + \rho_p$; blue) & isovector ($\rho_a \propto \rho_n - \rho_p$; green) densities displaced relative to each other.

As $S(\rho)$ changes, $\rho_a(r) \propto \frac{\rho(r)}{S(\rho(r))}$, so does displacement.

Probing Independently 2 Densities

Jefferson Lab

Direct: $\sim p$

Interference: $\sim n$

PD, Singh, Lee NPA958(17)147 [after Dao Tien Kho]

elastic: $\sim p + n$

charge exchange: $\sim n - p$

Expectations on Isovector Aura?

Much Larger Than Neutron Skin!

Surface radius $R \simeq \sqrt{\frac{5}{3}} \langle r^2 \rangle^{1/2}$

rms neutron skin

$$\begin{split} \langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2} \\ \simeq 2 \, \frac{N - Z}{A} \left[\langle r^2 \rangle_{\rho_n - \rho_p}^{1/2} - \langle r^2 \rangle_{\rho_n + \rho_p}^{1/2} \right] \end{split}$$

rms isovector aura

Estimated
$$\Delta R \sim 3 \Big(\langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2} \Big)$$
 for ⁴⁸Ca/²⁰⁸Pb!

Even before consideration of Coulomb effects that further enhances difference!

Isovector Aura Danielewicz

Direct Reaction Primer

It is common to assume the same geometry for $U_0 \& U_1$, implicitly ρ & ρ_a , e.g. Koning&Delaroche NPA713(03)231

Koning-Delaroche NPA713(03)231 same radii R for $U_0 \& U_1$!

$$U_1(r) \propto \frac{U_{01}}{1 + \exp\frac{r - R}{a}}$$

$$R \rightarrow R + \Delta R_1$$

charge-exchange cs oscillations grow

Different radii for densities/potentials: $R_a = R + \Delta R$

Simultaneous Fits to Elastic & Charge-Change: 92Zr

Different radii for densities/potentials: $R_a = R + \Delta R$

6 targets analyzed, differential cross section + analyzing power

Colored: Skyrme predictions. Arrows: half-infinite matter

Thick \sim 0.9 fm isovector aura!

S NSCL

~Independent of A.

Difference in Surface Diffuseness

Colored: Skyrme predictions. Arrows: half-infinite matter Sharper isovector surface than isoscalar!

Bayesian Inference

Probability density in parameter space p(x) updated as experimental data on observables E, value \overline{E} with error σ_E , get incorporated

Probability p is updated iteratively, starting with prior p_{prior} p(a|b) - conditional probability

$$p(x|\overline{E}) \propto p_{\text{prior}}(x) \int dE \, e^{-\frac{(E-\overline{E})^2}{2\sigma_E^2}} \, p(E|x)$$

For large number of incorporated data, p becomes independent of p_{prior}

In here, p_{prior} and p(E|x) are constructed from all Skyrme ints in literature, and their linear interpolations. p_{prior} is made uniform in plane of symmetry-energy parameters (L, S_0)

 E_{IAS}^* - from excitations to isobaric analog states in PD&Lee NPA922(14)1

Oscillations in prior of no significance

- represent availability of Skyrme parametrizations

Likelihood f/Neutron-Skin Values

Sizeable *n*-Skins

 E_{IAS}^* - from excitations to isobaric analog states in PD&Lee NPA922(14)1

Some oscillations due to prior

Isovector Aura

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large A, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry & neutron energies are stiff! $L = (70-100) \,\text{MeV}$, $S(\rho_0) = (33.5-36.5) \,\text{MeV}$ at 68% level
- Now: Novel error analysis

S NSCL

PD, Lee & Singh NPA818(09)36, 922(14)1, 958(17)147 + in progress

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large A, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces thick isovector aura $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry & neutron energies are stiff! $L = (70-100) \,\text{MeV}$, $S(\rho_0) = (33.5-36.5) \,\text{MeV}$ at 68% level
- Now: Novel error analysis

PD, Lee & Singh NPA818(09)36, 922(14)1, 958(17)147 + in progress DOE DE-SC0019209 + CUSTIPEN