EoS from terrestrial experiments:

static and dynamic polarizations of nuclear density

XIAMEN-CUSTIPEN WORKSHOP ON THE EOS OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY January 3-7, 2019, Xiamen, China

Hiroyuki Sagawa (RIKEN Nishina Center /University of Aizu)

- 1. Incompressibility and ISGMR
- 2. IAS and CSB and CIB interactions
- 3. Proton scattering and nuclear density polarization

The Nuclear Equation of State: Infinite System

The nuclear incompressibility from ISGMR

We can give credit to the idea that the link should be provided microscopically through the Energy Functional $E[\rho]$.

Extracting K_r from data

$$K_{\rm A} = K_{\infty} + K_{\rm surf} A^{-1/3} + K_{\tau} \delta^2 + K_{\rm Coul} \frac{{\rm Z}^2}{{\rm A}^{4/3}}$$

Using this formula globally is dangerous and should not be done (cf. M. Pearson, S. Shlomo and D. Youngblood) but one can use it <u>locally</u>.

 K_{Coul} can be calculated and ETF calculations point to $K_{\text{surf}}\approx -K_{\infty}.$

$$K_{\rm A} - K_{\rm Coul} \frac{{\rm Z}^2}{{\rm A}^{4/3}} = K_{\infty} (1 - A^{-1/3}) + K_{\tau} \delta^2$$

Correlation between Isospin GMR and nuclear matter properties

1.Nuclear incompressibility K is determined empirically with the ISGMR in ²⁰⁸Pb to be

K~230MeV(Skyrme,Gogny), K~250MeV(RMF).

K=(240 +/-10 +/- 10)MeV

- 2. Combining ISGMR data of Sn and Cd isotopes(RCNP) K=(225 +/-10)MeV
- 3. $K_{\tau} = -(500 \pm 50) \text{MeV}$

is extracted from isotope dependence of ISGMR.

$$K_{\tau} = Ksym + 3L - \frac{27L\rho_{nm}^2}{K} \frac{d^3H_{nm}}{d\rho^3}\Big|_{\rho = \rho_{nm}}$$

The isobaric analog state energy: ΔE_d

• **Definition:** $(N, Z+1) \rightarrow (N+1, Z)$: T_0 g.s. isospin of (N+1, Z), its IAS in (N, Z+1) will be the lowest state where $T = T_0$.

- Analog state can be defined: $|A\rangle = \frac{T_{-}|0\rangle}{\langle 0|T_{+}T_{-}|0\rangle}$
- Displacement energy

$$E_{IAS} \approx \Delta E_{d} \equiv E_{A} - E_{0} = \langle A | \mathcal{H} | A \rangle - \langle 0 | \mathcal{H} | 0 \rangle = \frac{\langle 0 | [T_{+} [\mathcal{H}, T_{-}] | 0 \rangle}{\langle 0 | T_{+} T_{-} | 0 \rangle}$$

E^{exp}_{IAS} easy to measure and depends only on isospin symmetry symmetry breaking terms: Coulomb and to less extent (few %) strong interaction

Coulomb direct displacement energy

$$\left< \left[T_{+}, [H, T_{-}] \right] \right> \Rightarrow$$

$$\Delta E_{d} \approx \Delta E_{d}^{C,direct} = \frac{1}{N-Z} \int \left[\rho_{n}(\vec{r}) - \rho_{p}(\vec{r}) \right] U_{C}^{direct}(\vec{r}) d\vec{r}$$

where
$$U_{C}^{direct}(\vec{r}) = \int \frac{e^2}{|\vec{r}_1 - \vec{r}|} \rho_{ch}(\vec{r}_1) d\vec{r}_1$$

Assuming a uniform neutron and proton distributions of radius R_n and R_p respectively, and $\rho_{ch} \approx \rho_p$ one can find

$$\Delta E_{d} \approx \Delta E_{d}^{C,direct} \approx \frac{6}{5} \frac{Ze^{2}}{R_{p}} \left(1 - \frac{1}{2} \frac{N}{N - Z} \frac{R_{n} - R_{p}}{R_{p}} \right)$$

One may expect: the larger the Δr_{np} the smallest E_{IAS}

Volume 23, Number 9

PHYSICAL REVIEW LETTERS

1 September 1969

COULOMB ENERGIES AND THE EXCESS NEUTRON DISTRIBUTION FROM THE STUDY OF ISOBARIC ANALOG RESONANCES[†]

Naftali Auerbach, Jörg Hüfner, A. K. Kerman, and C. M. Shakin

π> Parent State	Ca ⁴⁹	Sr ⁸⁹	Ba ¹³⁹	Pb ²⁰⁹
E _R -E _A ContinComp. M	ixing -0.06	-0.10	-0.17	-0.48
Dyn. p-n Mass E	ffect 0.04	0.04	0.04	0.04
El.Magn. Spin O	rbit -0.07	-0.08	-0.01	-0.02
AppC.D. ∫Estimate Eq.(5)	-0.20	-0.16	-0.23	-0.25
^{DE} d Phenomen. Force	-0.02	-0.16	-	
Coul (Direct Term	7.60	12.10	15.46	19.95
AEd [Exchange Term	-0.31	-0.35	-0.35	-0.35
$\Delta E_d^{F.S.}$ Finite Proton S	ize -0.10	-0.11	-0.11	-0.11
ΔE_d^{CORR} Short Range Cor	relat. ~0.1	~0.1	~0.1	~0.1
ΔE_d^{T-IMP} Collective Mode	1 -0.01	-0.04	-0.06	-0.09
Theory	7.08±.20	11.40±.25	14.67±.25	18.79±.25
E _R -E _π [Experiment	7.083±.015 ^(a)) 11.40±.02 ^(a)	14.67±.02 ^(a)	18.790±.013 ^(b)
c [fm]	1.03	1.08	1.09	1.12
t [fm] Charge Distribu	2.3	2.3	2.3	2.2
r _o [fm] Neutron Potenti	al 1.06±.08	1.10±.05	1.11±.05	1.12±.04
(Excess Neutrons	3.71±.18	4.36±.15	4.99±.15	5.63±.15
R_[fm] Protons	3.42	4.10	4.75	5.42
(All Neutrons	3.51±.04	4.17±.05	4.83±.05	5.50±.05

EDFs derived from Hartree-(Fock) + Random Phase approximations using relativistic (and non-relativistic) interactions where the nuclear part is isospin symmetric and U_{ch} is calculated from the ρ_p How can we reconcile this contradiction between IAS energy and neutron skin?

Xavi Roca-Maza, Gianluca Colo and HS

PHYSICAL REVIEW LETTERS 120, 202501 (2018)

Isospin proposed by J. Heisenberg

Isospin conservation [H,T] = 0

$$[H,T] = [V_C + V_{CSB} + V_{CIB}, T] \neq 0$$

Scattering Length

$$a^{pp}_{(S=0)} = -17.3 \pm 0.4 \text{fm},$$

 $a^{nn}_{(S=0)} = -18.7 \pm 0.6 \text{fm},$
 $a^{pn}_{(S=0)} = -23.70 \pm 0.03 \text{fm}.$

The difference between a_0^{pp} and a_0^{nn} is an evidence of CSB (charge symmetry breaking) nuclear force, while the difference between a_0^{pn} and the average $(a_0^{pp} + a_0^{nn})/2$ is due to CIB (charge invariance breaking) force.

Proton=(uud)	m _u c² _~ 2.3MeV			
Neutron=(udd)	m _d c ² ~4.8MeV			
QCD dynamics of strong interaction				
Explicit Chiral symmetry breaking				

• Isospin symmetry breaking (Skyrme-like): two parts

H. Sagawa, N. V. Giai, and T. Suzuki, Phys. Lett. B 353, 7 (1995). charge symmetry breaking charge independence breaking* $V_{CSB} = V_{nn} - V_{pp}$ $V_{\text{CIB}} = \frac{1}{2} \left(V_{\text{nn}} + V_{\text{pp}} \right) - V_{\text{pn}}$ $V_{\text{CSB}}(\vec{r}_1, \vec{r}_2) \equiv \frac{1}{4} \left[\tau_z(1) + \tau_z(2) \right] \left\{ s_0(1 + y_0 P_{\sigma}) \,\delta(\vec{r}_1 - \vec{r}_2) \, V_{\text{CIB}}(\vec{r}_1, \vec{r}_2) \equiv \frac{1}{2} \tau_z(1) \tau_z(2) \left\{ u_0(1 + z_0 P_{\sigma}) \,\delta(\vec{r}_1 - \vec{r}_2) \right\} \right\}$ + $\frac{1}{2}u_1(1+z_1P_{\sigma})\left[{P'}^2\delta(\vec{r}_1-\vec{r}_2)+\delta(\vec{r}_1-\vec{r}_2)P^2\right]$ $+\frac{1}{2}s_1(1+y_1P_{\sigma})\left[{P'}^2\delta(\vec{r}_1-\vec{r}_2)+\delta(\vec{r}_1-\vec{r}_2)P^2\right]$ $+s_2(1+y_2P_{\sigma})\vec{P}'\cdot\delta(\vec{r}_1-\vec{r}_2)\vec{P}$ $+u_2(1+z_2P_{\sigma})\vec{P}'\cdot\delta(\vec{r}_1-\vec{r}_2)\vec{P}$ where $\vec{P} \equiv \frac{1}{2} (\vec{\nabla}_1 - \vec{\nabla}_2)$ acts on the right and P' is its * general operator form $\tau_z(1)\tau_z(2) - \frac{1}{3}\vec{\tau}(1)\cdot\vec{\tau}(2)$. Our complex conjugate acting on the left and $P_{\tau/\sigma}$ are the prescription $\tau_{z}(1)\tau_{z}(2)$ not change structure of usual projector operators in isospin and spin spaces. HF+RPA.

Opposite to the other corrections, ISB contributions depends on new parameters that need to be fitted!

Isospin symmetry breaking in the medium:

- keeping things simple: CSB and CIB interaction just delta function depending on s_0 and u_0 . Different possibilities: \rightarrow Fitting to (two) experimentally known IAS energies
- \rightarrow Derive from theory

 \rightarrow our option: u_0 to reproduce BHF (symmetric nuclear matter) and s_0 to reproduce E_{IAS} in ²⁰⁸Pb

Physics Letters B 445, 259 (1999)

SAMI -ISB finite nuclei properties SAMI is refitted with the protocol

El.	N	В	Bexp	r _c	r_{c}^{exp}	ΔR_{np}
		[MeV]	[MeV]	[fm]	[fm]	[fm]
Ca	28	417.67	415.99	3.49	3.47	0.214
Zr	50	783.60	783.89	4.26	4.27	0.097
Sn	82	1102.75	1102.85	4.73	_	0.217
Pb	126	1635.78	1636.43	5.50	5.50	0.151

Corrections on E_{IAS} **for** ²⁰⁸**Pb one by one**

	E _{IAS} [MeV]	Correction [keV]
No corrections ^a	18.31	
Exact Coulomb exchange	18.41	+100
n/p mass difference	18.44	+30
Electromagnetic spin-orbit	18.45	+10
Finite size effects	18.40	-50
Vacuum polarization (V _{ch})	18.53	+130
Isospin symmetry breaking	18.80	+270

^a From Skyrme Hamiltonian where the nuclear part is isospin symmetric and V_{ch} is calculated from the ρ_p

 $E_{IAS}^{exp} = 18.826 \pm 0.01$ MeV. Nuclear Data Sheets 108, 1583 (2007).

E_{IAS} with SAMi-ISB

Direct determination of the neutron skin thicknesses in ^{40,48}Ca from proton elastic scattering at $E_p = 295 \text{ MeV}$

J. Zenihiro,^{1,*} H. Sakaguchi,² S. Terashima,³ T. Uesaka,¹ G. Hagen,^{4,5} M. Itoh,⁶ T. Murakami,⁷ Y. Nakatsugawa,⁸ T. Ohnishi,¹ H. Sagawa,^{1,9} H. Takeda,¹ M. Uchida,¹⁰ H.P. Yoshida,² S. Yoshida,¹¹ and M. Yosoi²

To be published

Differential cross sections and analyzing powers for po-FIG. 1. larized proton elastic scattering from ^{40,48}Ca at 295 MeV. Blue and red lines are from the MH model and the result of the best-fit in this analysis, respectively.

Examples: EoS parameters from nuclear observables

Isovector properties (e.g. $S(\rho)$) are thought to be well determined by the neutron skin thickness $(\Delta r_{np} \equiv \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2})$ of a heavy nucleus such as ²⁰⁸ Pb): Macroscopic model: $\Delta r_{np} \sim \frac{1}{12} \frac{(N-Z)}{A} \frac{R}{J} L$ $(L \propto p_0^{neut})$

Micorscopic models (EDFs) confirm such a relation However the experimental precision and accuracy needed in the measurment of this property is very challenging nowadays.

Physical Review Letters **106**, 252501 (2011) [Exp. from strongly interacting probes: ~ 0.15 – 0.22 fm (*Physical Review C* **86** 015803 (2012))].

FIG. 2. Extracted ρ_n with error-envelopes of 40,48 Ca (red hatched and blue cross-hatched) and ρ_p derived from ρ_{ch} (black dash-dotted). Upper panels are the density distribution ($\rho(r)$), and the lower panels are the nucleon number distribution ($4\pi r^2 \rho(r)$).

		r _{ch}	r_p	<i>r</i> _n	Δr_{np}	δ^{\exp}	$\delta^{\exp+mdl}$
⁴⁰ Ca	This work	3.480	3.385	3.375	-0.010	+0.022 -0.023	+0.049 -0.048
⁴⁸ Ca	This work	3.460	3.387	3.555	0.168	+0.025	+0.052 -0.055
	DD-MEb	-	3.39	3.57	0.18	-	-
	SAMi-J28	-	3.44	3.60	0.16	-	-
	NNLO sat	-	3.41	3.54	0.13	-	-
	ΔNNLO	-	3.47	3.62	0.15	-	-

Constraints on *J* and *L*

SUMMARY

1. Neutron skin of ⁴⁸Ca is determined by the polarized proton elastic scattering to be

delta r_{np}=0.169 +/- 0.025 fm

2. This value constrains the symmetry energy coefficients

L=42 +/- 15 K_{sym}= -120 +/-40