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Gravitational-wave astronomy provides new opportunities to probe neutron 
star properties.

Deviations from point-mass dynamics become important during the late stages of 
binary inspiral, leading through to the (messy) dynamics of the remnant. 

catching the wave

[Adapted from J Read]
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Measurability of tidal deformability 

• Preliminary studies (based on 
Fisher information matrix) indicate 
that adLIGO/Virgo might be able 
to measure the softest EOS (e.g. 
Hinderer et al, arxiv:0911.3535) 

• Fisher matrix studies find the 
minimum uncertainty attainable in 
measuring a parameter 

• Cramer-Rao lower bound

Hinderer et al, arxiv:0911.3535
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Basically, the tidal interaction affects the number of gravitational-wave cycles
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Given the Newtonian orbital energy
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ȧ

a
=

3

2

Ėorb

Eorb
⇡ 3

2
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defines the inspiral timescale tD. That is, we have
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The two neutron stars will merge about 2 minutes after the system enters our assumed frequency range. The result
also manifests the well-known fact that the leading order gravitational-wave signal only encodes the chirp mass.
However, one would expect to be able to extract the individual masses (and possibly the spins) from higher order
post-Newtonian corrections [25]. This is important as the stellar parameters enter the discussion of the tidal response.
These e↵ects are, of course, subtle and a key question concerns to what extent unmodelled features may limit the
precision of the parameter extraction. It is important to keep in mind that, while one may expect to obtain fairly
good estimates for the individual masses, it will be more di�cult to infer the individual spin rates (the spin-spin and
spin-orbit coupling e↵ects are likely to be weak).

As long as it is safe to ignore other aspects, the binary signal would be associated with a total number of cycles;
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For our example frequency range the total number of cycles would be Ngw ⇡ 2500.
Let us now consider the possibility that the tidal dynamics leads to some additional change of orbital energy, say

at a rate Ėtide. This will lead to a change in the number of wave cycles in the observed frequency range. Specifically,
with

Ėorb = Ėgw + Ėtide (10)

we have
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where the last step should be a good approximation if Ėtide ⌧ Ėgw. We see that the additional torque leads to a
contribution;
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This allows us to estimate the relevance of any mechanism that is active through the observed frequency range. Note
that, even though one might intuitively expect an increase in the rate of inspiral, e.g. a decrease in the number of
cycles, there may be situations where the opposite happens and an additional mechanism pumps energy into the orbit.
In this case the number of cycles would obviously increase. We discuss a particular example of this later.

Moreover, we have not accounted for any changes to the orbital energy associated with the tidal e↵ect. If we do
this, say, by letting

Eorb = EN + Er (13)

then we arrive at
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Template mismatch by (say) half a 
cycle leads to a significant loss of 
signal to noise.

However - difficult to alter the 
wave phasing (e.g. 1046 erg at 100 
Hz leads to shift of  10-3 radians).

The star’s deformability, encoded 
in the so-called Love number, may 
lead to a distinguishable secular 
effect:

[Hinderer et al]



Demonstrated by the spectacular 
GW170817 event.
Best constraints on the tidal 
deformability for this single event 
(assuming the same EoS, slow spins and 
max. mass indicated by pulsar data) 
suggests a neutron star radius in the 
range
R=10.5-13.3 km

Similar to the x-ray results from 
accreting neutron stars…

[Abbott et al]

GW170817

One may also use the data to constrain the allowed maximum mass (of non-
rotating stars).
The GW170817 data suggests that the maximum mass is below 2.16M⊙.
Should do better in the future, but may have to wait a while… 



The tidal analysis assumes matter in equilibrium, but… the inspiral is much 
faster than the relevant equilibration rates:

I. INTRODUCTION

The breakthrough detection of signals from inspiralling and merging black-hole binaries

demonstrates the promise of gravitational-wave astronomy. As the sensitivity of the de-

tectors is improved, we can expect more exciting discoveries. In particular, there is great

hope that we will soon catch waves from double neutron star systems approaching merger.

Such systems will spend their last 15 minutes or so in the sensitivity band of ground-based

interferometers (above 10 Hz). The detection of, and extraction of parameters from, binary

neutron star signals is of great importance for both astrophysics and nuclear physics. From

the astrophysics point-of-view observed event rates should lead to insights into the forma-

tion channel(s) for these systems, while the nuclear physics aspects relate to the poorly

constrained equation of state for matter at supranuclear densities.

TODO: Need to work in GW170817 and the tidal constraints on the radius.

Focussing on the nuclear physics, one can argue that binary neutron star signals will

constrain the equation of state in two ways. First of all, finite size e↵ects will impact on

the inspiral signal. The compressibility of the stellar fluid will leave a potentially detectable

imprint on the late-time chirp, an e↵ect encoded in the tidal Love numbers. Meanwhile,

oscillations of the merger remnant, which depend on the hot equation of state, may leave a

robust signature. However, the relatively high-frequency nature of the signal may make it

di�cult to detect with the current generation of detectors.

In this paper we focus on the tidal compressibility. Our aim is simple; we want to explore

to what extent the composition of the neutron star matter enters the problem. In principle,

one would expect the composition to play a role. As the star is deformed but the tidal

interaction, matter is inevitably driven out of beta equilibrium and it is straightforward

to argue that the the relevant nuclear reactions are too slow to enforce equilibrium on the

timescale of inspiral. This is clear from, for example, the estimates in [1]. The relevant

equilibration timescales are

⌧M ⇠ 2 months

T 6
9

, ⌧D ⇠ 20 s

T 4
9

, ⌧H ⇠ 1 ms

T 2
9

(1)

for the modified and direct Urca reaction as well as fast reactions involving hyperons, respec-

tively. The temperature is scaled to hot systems, T9 = T/109 K, but inspiralling neutron

stars are old and should be very cold. Hence, we expect T9  0.01, which would make both

⌧M and ⌧D much longer than the time it takes the system to move through the sensitivity

2

Basically, the matter composition should be “frozen”. This should impact on the 
tidal deformation (at some level). 
Thinking of the deviation from chemical equilibrium ∆! as a function of the 
density " and the proton fraction xp we have

beyond equilibrium
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or, as it turns out to be more convenient to work with ⇢ and �,
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TODO: As an aside - making contact with Pantelis’ notes - we can write this as
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But then it follows that
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so this does not seem very useful. The actual stratification is hidden in ��.
The question is, what can we say about reactions? For the protons, we have (in general)
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so, using overall baryon number conservation,
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we get (assuming that protons and neutrons move together)
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However, we assume that the reaction rate (�) relates to perturbations. That is, we need
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where (at least for small deviations from equilibrium TODO: ref Haensel paper )

� ⇡ ��� (47)

where the coe�cient � encodes the reaction rates.
Thinking of � as a function of ⇢ and xp, and assuming that the star is non-rotating (so that vi = 0), we have
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Which, once we use (46), becomes
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In essence, we have
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For slow reactions, we need to solve the time dependent problem – which is a 
bit tricky. 
However, it is interesting to ask to what extent we can also use observations to 
constrain the matter composition. Also, we need to quantify systematic 
effects that impact on parameter extraction.



The composition also affects the star’s oscillation modes – in particular, the g-
modes. 
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The state of matter comes into play: 
− in superfluid npe matter there are no g-

modes, but…
− as the muons appear, matter is stratified, 

leading to a set of (higher frequency) g-
modes.
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The tidal interaction leads to resonances. 
In principle, observations constrain the 
“overlap” between the tide and a mode’s 
eigenfunction
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A. Non-rotating stars

Let us first consider the case of a non-rotating star, in which case the di↵erent m harmonics are degenerate. In this
case, we can use the results from [16];
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where we have introduced the dimensionless mode frequency !̂↵ through

!↵ = !̂↵⌦0 (22)

The remaining parameter, Q↵, encodes the “overlap integral” which determines the strength of the tidal coupling to
particular stellar oscillation modes. We also have the resonance condition

!↵ = 2⇡f↵ = 2⌦ = 2⇡f (23)

It is important to note that, for the quadrupole case, the oscillation frequency of the resonant mode (f↵) is equal to
the observed gravitational-wave frequency (f).

If we introduce the resonance radius
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where f̂↵ = !̂↵/2⇡. At resonance, we also have
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and it follows from (16) that
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As one might have expected, this is likely to be a small e↵ect. Still, it is instructive to consider to what extent the
di↵erent contributions can be considered known. We have already discussed the expected range for the mass ratio q
(from radio observations). The star’s compactness is also (although less so) constrained by observations. From x-ray
observations of accreting neutron stars one would expect the radius of a 1.4M� star to lie in the range 10 � 14 km
[30] (we will take the lower end of this range as our canonical case in the following). As the mass-radius curve tends
to rise steeply in the relevant mass range (for a typical equation of state) we might assume the radius to be inside
this range for all plausible masses in a binary. (Note that this argument does not account for the softening e↵ect of
possible internal phase transitions.) This would constrain the compactness to the range

0.12  GM1

c2R1
 0.24 (29)

This introduces an uncertainty of about a factor of 30 in the above estimate for �N , illustrating the importance of
obtaining tighter constraints on the neutron star radius. This is, of course, one of the main targets of the observations
in the first place. One may hope to (eventually) get a tighter radius constraint from the tidal compressibility. In



Tidal resonances may not have major impact, but...
− the excitation of the star’s f-mode could leave an imprint close to merger,

− there may an instability due to nonlinear p-g mode coupling, supposedly 
a non-resonant effect that relies on a strong overlap between the tide and 
high overtone p/g modes (high/low frequencies),

− coupling to the interface mode at the crust-core transition may shatter 
the crust (this is another story…)

− the impact of the crust elasticity is weak, but the effect of a solid core (e.g. 
crystalline CFL) could be significant (also… another story)  

[Hinderer et al]



The final merger was not seen in the GW170817 signal – need detectors to be 
more sensitive at high frequencies – although the launch of the GRB may require 
a fairly prompt collapse to a black hole. 

[Clark et al]

Eventually… we should be able to detect the oscillations of the merger 
remnant. 
This should enable hot neutron star seismology.
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Simulations suggest a strong 
correlation between the tidal 
deformability and the main peak in 
the spectrum of the oscillating 
remnant (the f-mode). 
This is “useful” as it would help 
parameter extraction.

[Bernuzzi et al]

In principle, the correlation is “expected” from results for single stars:

However, the result is “intriguing” as it suggests thermal effects and differential 
rotation do not significantly affect the oscillations. How do we understand this?
- simulations suggest the core rotates (roughly) uniformly and relatively slowly,
- thermal effects may be (largely) equation of state independent and affect the 

f-mode frequency as an overall factor.

2

Now, we need to substitute k2 as a function of C, where we use Formula 23 of [3], and subsequently take a C << 1
expansion and obtain:
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The C dependence on y is expected to be weak, because only an indirect dependence can be established at the level
of the EOS. So, treating that dependence as constant, we see that to leading order t

2 ⇠ C�5. Now, combining the
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Interestingly, this back-of-the-envelope calculation is seen to agree qualitatively with Fig 3 of [4].

III. EFFECT OF THERMAL PRESSURE

The calculations in the preceeding sections were performed under the assumption that finite temperature has no
role to play. But in realistic situations, like that of two merging NS, the temperature in the process can go very high,
typically to 85 MeV. Under such circumstances, the question of the importance (or lack thereof) of the thermal e↵ects
become very important. A crude computation of the speed of thermalisation can be computed by putting in typical
values of NS pressure and density to the formula cs = (P/⇢)1/2. For typical NSs, this number is almost a fraction of
the light crossing timescale. So the remnant will get plenty of time to thermalise.

Under thermalisation, the primary e↵ect would be an additional outward pressure , which would bloat the stellar
remnant outwards, bringing about a change in its average density, and thus the oscillational frequency f2. Con-
sequently, this will serve to modify the universal relation. We want to investigate the extent of modification thus
introduced. If we assume that the thermal pressure changes f2 to f̄2, where the overbar denotes thermally changed
quantities, then
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So in order to calculate the change in f2 we now have to calculate �C
C . As a first order measure, it is reasonable to

assume that the thermal e↵ects do not change the total mass-energy density of the star. In that case, if we equate
the total mass- energy density with and without the thermal e↵ect, we get
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As we enter the era of gravitational-wave astronomy we can expect to probe 
neutron star physics in new ways. 
Analysis of the GW170817 event demonstrates how gravitational-wave data can 
be used to constrain uncertain matter properties. 
Expect to do better in the future. There will be more detections – although we 
should keep in mind that GW170817 was “special”.
In order to ”dig deeper”, we need to improve the models:
- account for composition variation (reactions?) during late inspiral,
- explore role of state of matter (crust/superfluidity),
- build numerical simulations based on actual thermodynamics (heat),
- account for dynamical role of neutrinos (bulk viscosity),
- implement electromagnetism ”beyond ideal MHD”.

take home message


