

PKU-CUSTIPEN Nuclear Reaction Workshop "Reactions and Spectroscopy of Unstable Nuclei"

Supported by CUSTIPEN, NSFC, CCAST, Peking U, Beijing Normal U.

Time dependence of the isospin composition of the emission particles in the fission events of Ar+Au at 35 MeV/u

Zhigang Xiao Department of Physics, Tsinghua University

Contents

✓ Content

Introduction

• EOS of asymmetric nuclear matter at sub-saturation densities

• Fission and its possible relevance to $E_{sym}(\rho)$

• Experiment and Results

Fission Distributions

Spectra Fitting of Light Charged particles

New Experiment data

Summary

Symmetry Energy: Energy cost to convert protons to neutrons in nuclear medium Symmetry energy $E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{\text{mic}}$ $a_V = 16 \,\mathrm{MeV}$ $a_S = 18 \,\mathrm{MeV}$ $a_a = 21 \,\mathrm{MeV}$ $a_C = 0.7 \,\mathrm{MeV}$ $-\frac{\kappa^2}{2}\varepsilon^3+...+\delta^2$ $E(\rho,\delta) = E_0(\rho) + \delta^2 E_{\text{sym}}(\rho) = a_V + \frac{\kappa}{10} \epsilon^2$ E_{sym} 162 Ε E_{sym} к:Compressibility The neutron side of DRIPLINE the valley is poorly understood - scientists Nuclei with excess nucleons move down the valley toward stability aren't sure where the dripline lies $E_{\rm sym}(\rho) = E_{\rm sym}(\rho_0)$ SUPERHEAVY ELEMENTS $\delta = \frac{N-Z}{N+Z}$ Hafnium Xenon lin δ (N-Z) STABLE ELEMENTS

$E_{sym}(\rho)$ plays an essential role in astrophysics/nuclear physics

Astrophysics connection
→Proton fraction
→M-R relation
→ρ_c for D-Urca
→Transition density

 Phy. Rep. 442(2007) 109;
 NPA777(2006)479

 PRC76(2007),025801;
 PRC75(2007) 015801

 PRC74 (2006),035802;
 Astro. J. 676 (2008) 1170

 Phy. Rep. 411(2005) 325;
 PLB 642, 436 (2006)

Nuclear Physics connection

- → Nuclear Binding Energy
- \rightarrow 3 body force
- → Tensor force
- → Collision dynamics...

E_{sym} (ρ) very uncertain, particularly at $\rho > \rho_0$

L.W. Chen, C.M. Ko and B.A. Li, Phys. Rev. C72, 064309 (2005); C76, 054316 (2007).

While at sub-saturation densities.....

A list for sub-saturation density

At sub-saturation densities

S₀ 30

- \rightarrow Global nucleon optical potential in n/p-A collisions or (p,n) reactions
- → Neutron Skin thickness of Pb-208 (PREX experiment at JLAB)
- \rightarrow Isospin scalaring and isospin fractionaiton in multifragmentation
- \rightarrow Isospin diffusion
- \rightarrow n/p ratio of fast and pre-equilibrium nucleons
- \rightarrow N/Z composition of the emitted fragments
- \rightarrow GDR strength
- \rightarrow Correlation function
- $\rightarrow \dots$

 $S_0 = 32.5 \pm 2.5 \text{ MeV}$ L = 55 ± 25 MeV

Phys Rev C 83, 014604 (2011)

Phys Rev C87 (2013) 061601(R)

Using fission to study the long time effect of $E_{sym}(\rho)$

• Possible Advantages:

Animation by Tian Junong

- Ø Neck part: Very neutron rich, Low Densities
- If Time Scale: Between statistical emission (Q effect) and two body process (very short)

One Step backward: Isospin effect of the particle emission

Content

Introduction

EOS of asymmetric nuclear matter at sub-saturation densities

Fission and its possible relevance to $E_{sym}(\rho)$

• Experiment and Results

- Fission Distributions
- Spectra Fitting of Light Charged particles
- ▶ Future experiment

Experimental Set Up

- 35 MeV/u Ar+ Au.
- Trigger: 2 fold fragments .AND. 1 LCP
 - 2 fold fragments .AND. 1 Proj.-like

- 1) Six PPAC covering $\sim 1/3$ whole space
- 2) All about 30 cm to the target
- 3) 3 Si-CsI and 3 Si-Si-CsI (158,127,80) telescopes
- 4) One 12-unit Si-BGO hodoscope

TABLE I: The parameters of the 6 LCP telescopes						
Tele. No.	1	2	3	4	5	6
$d \pmod{m}$	12.0	10.2	10.4	14.0	14.0	14.0
L (cm)	11.5	11.5	11.5	26.0	21.6	28.5
θ (°)	158	155	127	80	59	44
ϕ (°)	-90	90	90	-145	-139	-133
$\Delta E_1 \ (\mu { m m})$	50	50	50	50	50	50
$\Delta E_2 \ (\mu \mathrm{m})$	400	1	400	400	/	/
$E_{\rm CsI} \ ({\rm mm})$	40	40	40	40	40	40

Fission Event Measurement and Reconstruction

• Folding angle method \rightarrow velocity of fragments, mass ratio ...

1) Fission fragments correlation

• 2-fold events with face-to-face PPACs fired show good back-to-back correlation!

Fission Distribution

1) Relative velocity peaks at 2.4 (Viola systematics), and showing slight asymmetry 2) At low and high V_{add} , the relative velocity exhibits different manner

LMT 同文献的比较

- LMT most probable at 0.56, consistent with Ar+Sn at 35 MeV/u $_{\circ}$
- Slightly deviate from the empirical prediction at 0.72, presumably the beam energy exceeds the range.

LCPs in coincidence with fission

• Mass Resolved spectra obtained at 2 degrees: 158, 80

NP

Double angular ratio of particle yield

- Model independently, particles emitted at smaller angle are more neutron rich
- Smaller angle emitted particles experience more dynamical contribution

Three moving source analysis

• Three moving source: CN, FF and Int. Velocity

$$\frac{d^2\sigma}{d\Omega dE} = \frac{N}{2(\pi T)^{3/2}} \left(E - E_{\rm c}\right)^{1/2} \exp\left[-\left(E - E_{\rm c}\right)/T\right]$$

STEP 1: Fit large angle telescope with CN sourceSTEP 2: Apply the CN parameters to the middle angle detectorSTEP 3: Fit the middle angle spectrum

Energy spectra analysis vs mass asymmetry

Minimum χ^2 analysis

Energy spectra vs. LMT

Minimum χ^2 analysis

0^E

0.4

0.8

V_{cn}(cm/ns)

1

0.6

1.2

- The hierarchy of Multiplicity ratio remains.
- Error bars are large for the FF source.

Ана-онд		ク		IQN	AD	ca	lculatio	ns		
	$V_{\rm loc} =$	$\frac{\alpha}{2} \frac{\rho^2}{\rho_0} + \frac{1}{\sigma} + \frac{C_s}{2} \left[\frac{\rho^{\gamma+1}}{\rho_0^{\gamma}}\right]$	$\frac{\beta}{1+1} \frac{\rho^{\sigma+1}}{\rho_0^{\sigma}} \frac{\rho^{\sigma+1}}{\rho_0^{\sigma}} \frac{1}{\rho_0^{\sigma}} (\rho^{\sigma+1}) \frac{\kappa_s}{\rho_0} $	$\frac{1}{2} + \frac{g_0}{2\rho_0} (\nabla \rho)^2$ $\nabla \rho)^2 \left[\delta^2 + g_\tau \frac{\rho^{\eta+1}}{\rho_0^{\eta}} \right]$	2.4 2.2 2 N 1.8	↓ • •	Without Fission	γ=0.5 γ=2.0	With Fissi	ion $\Rightarrow \gamma = 0.5$ $\Rightarrow \gamma = 2.0$
:	$lpha \ \sigma \ C_{ m s} \ g_{ au}$	207 MeV 7/6 32 MeV 14 MeV	$egin{array}{c} eta \ g_0 \ \kappa_s \ \eta \end{array}$	$138 { m ~MeV}$ $18 { m ~MeV} \cdot { m fm}^2$ $0.08 { m ~fm}^2$ 5/3	1.6 1.4 1.2 1	200	400 600 8 Time(fm/c)	00	200 400 60 Time(fn	0 800 1/c)

1)Along the whole decay chain, the average N/Z decreases with time.

 \rightarrow The neutron richness of the emitted particles is enhanced at the beginning of the emission.

2)The isospin composition N/Z exhibits an obvious dependence on $E_{sym}(\rho)$ till very late stage. 3)The effect of the symmetry energy remains equally significant in the fission.

 \rightarrow Scission point can be a clock to investigate the effect of $E_{sym}(\rho)$.

Further improved experiment

Targe

- <u>Complete in June 2014.</u>
- 1. Improved PID by using H.Q. telescopes
- 2. Lower energy threshold
- 3. More Detectors(> 5 positions)

PPAC Performance

Telescope Performance

• Isotope identification achieved in most of the telescopes \rightarrow More angles

- In 35 MeV/u 40Ar+197Au collisions:
- \rightarrow LCPs are measured in coincidence with fission events
- →Smaller angle products, with more contribution from dynamic emissions, are more neutron rich. A hierarchy from t to d and p are observed for the dynamic emissions, later emissions exhibit the inverse trend.
- →Effect of the symmetry energy persists to very late stage. Process with long time scale is sensitive to the underlying effect of the symmetry potential. The time dependent N/Z of the light charged particles can be used as a new probe to $E_{sym}(\rho)$
- \rightarrow Further experimental studies are of interest.

Please refer to R. Wang et al, Phys. Rev. C 89, 064613 (2014)

Acknowledgements

Collaborators

- THU: R. S. Wang, Y. Zhang, H. Yi, L. M. Lv, Y. Huang. W. J. Cheng. H. J. Li
- IMP: G. M. Jin, L. M. Duan, R. J. Hu, H. R. Yang,
 Y. P. Zhang, J. S. Wang, P. Ma, Y. J. Zhou,
 Y. Y. Yang, S. L. Jin.....
- CIAE: <u>Y. X. Zhang, Q. H. Wu</u>
- ATC: J. L. Tian
- MSU: B. Tsang

Funding: NSFC, Tsinghua University Initiative Scientific Research Program

Thank You for your attention!

PPAC Performance II

• Identify of fission fragments against light charged particles

Some example probes of $E_{sym}(\rho)$ at $\rho < \rho_0$

Isospin diffusion

ENP

Isoscaling

Correlation Function

Current constraints on $E_{sym}(\rho)$ at $\rho < \rho_0$

Nusym13 constraints on $E_{sym}(\rho_0)$ and L based on 29 analyses of some data

	Esym I	L
average of the means	31.55415	58.88646
standard deviation	0.915867	16.52645

Currently impossible to estimate a physically meaningful error bar Alex Brown: "K_{sym} is still a random number"

• L.W. Chen, arXiv:1212.0284 B.A. Li, L.W. Chen, F.J. Fattoyev, W.G. Newton, and C. Xu, arXiv:1212.1178