Indirect measurement of the ${}^{18}Ne(\alpha, p){}^{21}Na$ reaction rate

Liyong Zhang

Nuclear Astrophysics Group Institute of Modern Physics (Lanzhou)

Scientific Motivation

Reaction Mechanism:

Resonance reaction rate:

$$N_A < \sigma v > = 1.54 \times 10^{11} \ (\mu T_9)^{-3/2}$$
$$\sum_i (\omega \gamma)_i \times exp(-11.605 \ E_i / T_9) \ [cm^3 \ s^{-1} \ mol^{-1}]$$

$$\omega \gamma \approx \frac{2J_{22Mg} + 1}{(2J_p + 1)(2J_{21Na} + 1)} \Gamma_{\alpha}$$
$$\Gamma_{\alpha} = \frac{3\hbar^2}{\mu R_n^2} C^2 S_{\alpha} \times P_l(E_i)$$

- Indirect measurement:
- 1. Determine E_i and J^{π} of ²²Mg levels experimentally
- 2. The S_{α} factors were adopted from the mirror ²²Ne

Present Status

Thick Target Method:

Beam Production

CRIB(CNS low-energy Radioactive-Ion Beam) separator

Beam Particle Identification

Experimental Setup

PPACs Position Resolution: 1 mm Count Rate: 10⁶ pps Target φ=30 mm, 90 μm CH₂ φ=30 mm, 50 μm C

Si Telescopes

Size: 5×5 cm ∆E: 300/65 μm E: 1.5 mm

Reaction Product PID

Reconstruction of the $E_{c.m.}$ Spectrum

R-Matrix Fitting

The Visual edition of the MULTI Program

These spin-parity values were used to calculate the ${}^{18}Ne(\alpha, p){}^{21}Na$ rate

Results: Calculated reaction rate

$$N_A < \sigma v > = 1.54 \times 10^{11} \, (\mu T_9)^{-3/2} \sum_i (\omega \gamma)_i \, \times exp(-11.605 \, E_i/T_9) \, [cm^3 \, s^{-1} \, mol^{-1}]$$

Results: Astrophysical impacts

Summary

- The ¹⁸Ne(α ,p)²¹Na reaction rate was indirectly measured via a ²¹Na(p,p)²¹Na experiment
- The resonance properties were determined via an R-Matrix analysis
- The ¹⁸Ne(α ,p)²¹Na reaction rate is recalculated, which is 10 to 100 times larger than previous ones
- The peak energy generation rate increased by a factor of 1.4-1.8

Thank you

- typical temperature = 0.4 2.0 GK
- Crresponding Energy Region
 - $E_{cm}^{\alpha} = 0.7 2.1 \text{ MeV}$
 - $E_x^{(22}Mg) = 8.8 10.2 \text{ MeV}$
- LLN, Belgium (Edinburgh Group, PRC)
 - $E_{\rm cm}^{\alpha} = 1.7 3.01 \, {\rm MeV}$
 - ¹⁸Ne beam + ⁴He gas target
- ANL, USA (S. Sinha et al., ANL Annu. Report)
 - *E*_{cm}^α = 1.2 2.5 MeV,
 - ²¹Na beam + CH₂ target
- CNS (J.J. He et al., PRC)
 - $E_{cm}^{\alpha} \sim 0.76$ MeV,
 - ²¹Na beam + CH₂ target
- Our results: $E_{cm}^{\alpha} = 0 1.6 \text{ MeV}$

Experimental Setup

+ 1 primary beam ²⁰Ne⁸⁺ --- Energy: 8.1 AMeV --- Intensity: 300 pnA

+ 2 Production Target: D₂

--- Length: 80 mm --- Temperature: 80 K (液氮冷却) --- Pressure: 500 Torr --- Thickness: 2.4 mg/cm²