Recent reaction studies on particle-unbound states with CDCC

K. Ogata¹, Y. Kikuchi², T. Myo³, T. Furumoto⁴, K. Minomo¹, T. Matsumoto⁵, and M. Yahiro⁵

¹RCNP, Osaka University, ²RIKEN Nishina Center, ³Osaka Institute of Technology, ⁴Ichinoseki National College of Technology, ⁵Kyushu University
Exploration of unbound (but not free) systems

Our Aim

Dynamical description of *Formation and Decay* of unbound systems

Today’s topic
1. Form of 22C* in a breakup observable
2. Decay mode of the 2_1^+ state of 6He
COSM-CDCC for 22C breakup by 12C

Structural part: Cluster Orbital Shell Model (COSM)

- Core + valence N system is described well.
- Pseudo states covering large space are obtained.

Details of COSM:
COSM-CDCC for ^{22}C breakup by ^{12}C

Reaction part: Four-body CDCC

![Diagram showing eigenstates obtained by diagonalization, discretized-continuum states, and their relation to ^{22}C internal wave functions and relative motion between ^{22}C and target.]

Details of four-body CDCC:
T. Matsumoto *et al.*, PRC **70**, 061601(R) (2004); ibid. 73, 051602(R) (2006).
CSM Smoothing
(CSM: Complex-Scaling Method)

T. Matsumoto, Kato, and Yahiro, PRC 82, 054602(R) (2010).

Eigenstates of H^θ
(complex-scaled Hamiltonian)

\[\tilde{T}_i^\theta = \sum_n \left\langle \tilde{\phi}_i^\theta \left| C(\theta) \right| \Phi_n \right\rangle T_{n}^{\text{CDCC}} \]

index for the pseudostates Φ_n used in CDCC

\[\frac{d\sigma}{d\epsilon} = \frac{1}{\pi} \text{Im} \sum_i \frac{T_i^\theta \tilde{T}_i^\theta}{\epsilon - \epsilon_i} \]

index for the eigenstates ϕ_i^θ of H^θ
Microscopic CDCC

$n + n + c$ dynamics explicitly described
The CSM smoothing* is adopted to obtain the BUX.

COSM predicts the following resonances:

- **22C resonance**
 - 0^+_2: $1.02 - i 0.52/2$
 - 2^+_1: $0.86 - i 0.10/2$
 - 2^+_2: $1.80 - i 0.26/2$

- **21C resonance**
 - $d_{3/2}^-$: $1.1 - i 0.10/2$

How are these resonances observed?

T. Matsumoto et al., PRC 82, 054602(R) (2010).
A new smoothing method* is adopted to obtain the BUX.

COSM predicts the following resonances:

- ^{22}C resonance $02^+: 1.02 - i 0.52/2$
- ^{22}C resonance $21^+: 0.86 - i 0.10/2$
- ^{22}C resonance $22^+: 1.80 - i 0.26/2$

- ^{21}C resonance $d_{3/2}: 1.1 - i 0.10/2$

How are these resonances observed?

*T. Matsumoto et al., PRC 82, 054602(R) (2010).
DDBUX of 22C by 12C

- The CSM smoothing* is adopted to obtain the BUX.
- COSM predicts the following resonances:

 22C resonance

 $0_{2}^{+}: 1.02 - i 0.52/2$
 $2_{1}^{+}: 0.86 - i 0.10/2$
 $2_{2}^{+}: 1.80 - i 0.26/2$

 21C resonance

 $d_{3/2}: 1.1 - i 0.10/2$

How are these resonances observed?

*T. Matsumoto et al., PRC 82, 054602(R) (2010).
CSM Smoothing
(CSM: Complex-Scaling Method)

T. Matsumoto, Kato, and Yahiyo, PRC 82, 054602(R) (2010).

Eigenstates of H^θ
(complex-scaled Hamiltonian)

$\tilde{T}_i^\theta = \sum_{n} \langle \phi_i^\theta | C(\theta) | \Phi_n \rangle T_n^{\text{CDCC}}$

index for the pseudostates Φ_n used in CDCC

$\frac{d\sigma}{d\epsilon} = \frac{1}{\pi} \text{Im} \sum_i \frac{T_i^\theta \tilde{T}_i^\theta}{\epsilon - \epsilon_i}$

index for the eigenstates ϕ_i^θ of H^θ
The CSM smoothing* is adopted to obtain the BUX.

COSM predicts the following resonances:

^{22}C resonance
- $0_{2}^{+}: 1.02 - i \ 0.52/2$
- $2_{1}^{+}: 0.86 - i \ 0.10/2$
- $2_{2}^{+}: 1.80 - i \ 0.26/2$

^{21}C resonance
- $d_{3/2}: 1.1 - i \ 0.10/2$

How are these resonances observed?

*T. Matsumoto et al., PRC 82, 054602(R) (2010).
DDBUX of 22C by 12C

✓ The CSM smoothing* is adopted to obtain the BUX.

✓ COSM predicts the following resonances:

22C resonance
- 0^+_2: $1.02 - i 0.52/2$
- 2^+_1: $0.86 - i 0.10/2$
- 2^+_2: $1.80 - i 0.26/2$ negligible

21C resonance
- $d_{3/2}^-$: $1.1 - i 0.10/2$ negligible

How are these resonances observed?

*T. Matsumoto et al., PRC 82, 054602(R) (2010).
The narrow peak around 0.8 MeV is due to the 2_1^+ resonance of ^{22}C.

The shape of the 0_2^+ resonance is due to background phase effect.
BackGround Phase (BGP) effect

- In nuclear physics, we always have δ_{bg}.
- There are many examples of this effect in many research fields.
- In most cases, this effect is observed as small changes in the resonance energy and width.

\[
S(\epsilon) = e^{2i\delta_{bg}(\epsilon) + 2i\delta_{res}(\epsilon)}
\]
\[
= e^{2i\delta_{bg}(\epsilon)} \frac{\epsilon - \epsilon_{res} - i\Gamma/2}{\epsilon - \epsilon_{res} + i\Gamma/2}
\]
The BGP effect is indeed sizable.

- We have a variety of patterns of the resonant (and 0^+) cross section.
- Appear in only the 0^+ state
The BGP effect is indeed sizable.
We have a variety of patterns of the resonant (and 0^+) cross section.
Appear in only the 0^+ state
Summary of the 1st topic

What is the form of $^{22}\text{C}^*$ in a breakup observable?

KO, Myo, Furumoto, Matsumoto, Yahiro, PRC 88, 024616 (2013).

✓ The 2_1^+ state: Breit-Wigner form
✓ The 0_2^+ state: peculiar form due to the BGP effect (coexistence of the 0^+ resonant and nonresonant waves)
✓ The BGP has a strong scattering-angle dependence.
✓ We should be careful to identify the 0_2^+ state of ^{22}C in the observables.
What is the decay mode of the 2_{1}^{+} state of 6He?

Sequential decay di-neutron decay democratic decay
CDCC-CSLS

✓ The method of Complex-Scaled solutions of the Lippmann-Schwinger Eq.

$$T (p, k) = \left\langle \Phi^{(-)} (p, k) e^{iK \cdot R} \left| U \right| \Psi^{CDCC} \right\rangle$$

$$= \sum_{n} \left\langle \Phi_{n} \right\rangle \left\langle \Phi_{n} \right| \approx 1$$

$$\approx \sum_{n} \left\langle \Phi^{(-)} (p, k) \left| \Phi_{n} \right\rangle T_{n}^{CDCC} \right|$$

$$\equiv f_{n} (p, k)$$

$$f_{n} (p, k) = \left\langle \varphi_{\text{free}} (p, k) \left| \Phi_{n} \right\rangle + \sum_{i} \left\langle \varphi_{\text{free}} (p, k) \left| V_{\alpha nn} C^{-1} (\theta) \right| \phi_{i} \right\rangle$$

$$\times \frac{1}{\varepsilon - \varepsilon_{i}^{\theta}} \left\langle \tilde{\phi}_{i}^{\theta} \left| C (\theta) \right| \Phi_{n} \right\rangle$$
Sequential decay quenched

When \(\varepsilon \sim 1 \text{ MeV} \) and \(\varepsilon_{\alpha-n} \sim 0.7 \text{ MeV} \), the other neutron \((\sim 0.3 \text{ MeV}) \) hardly penetrates the centrifugal barrier (\(p \)-wave).

The peak of the green line suggests the di-neutron decay or the democratic decay.
Coexistence of two decay modes

\[^6\text{He}(2_1^+) \]

The lower peak suggests the di-neutron decay due to the Fin. State Int. (FSI).

The higher peak indicates the democratic decay.

✓ The lower peak suggests the di-neutron decay due to the Fin. State Int. (FSI).
✓ The higher peak indicates the democratic decay.

→ Decay of a di-neutron in the \(2_1^+ \) state not due to the FSI.
Summary of the 2nd topic

What is the decay mode of the 2_1^+ state of 6He?

Sequential decay di-neutron decay democratic decay
What is the decay mode of the 2_1^+ state of ^6He?

- **Sequential decay**
- **Di-neutron decay** (due to FSI)
- **Democratic decay** (not due to FSI)
Exploration of unbound (but not free) systems

Today’s topic
1. Form of $^{22}\text{C}^*$ in a breakup observable
2. Decay mode of the 2_1^+ state of ^6He

Dynamical description of Formation and Decay of unbound systems

Exploration of unbound (but not free) systems

Our Aim

Dynamical description of Formation and Decay of unbound systems

Today’s topic

1. Form of $^{22}{\text{C}}^*$ in a breakup observable
2. Decay mode of the 2_{1}^{+} state of $^{6}{\text{He}}$
Numerical inputs

22C wave function

- Minnesota force for $n-n$, Woods-Saxon potential for $n-^{20}C$.
- $s_{1/2}, p_{3/2}, p_{1/2}, d_{5/2}, d_{3/2}, f_{7/2}, f_{5/2}, g_{9/2}, g_{7/2}, h_{11/2},$ and $h_{9/2}$ for the n s.p. orbit.
- Each orbit is described by 10 Gaussian basis functions.

0^+ ground state with $S_{2n} = 289$ keV, 604 0^+ and 1,385 2^+ PS

22C-^{12}C breakup reaction

- 77 (0^+) + 164 (2^+) PS below 10 MeV are included as breakup states of ^{22}C.
- Distorting potentials are calculated by a microscopic folding model with CEG07 nucleon-nucleon g matrix.
- We adopt the so-called no-recoil approximation for the ^{20}C core nucleus.

p-12C scattering at 250 MeV

Nuclear density: L. C. Chamon et al., PRC 66, 014610 (2002) [Sao Paulo group]
Complex Scaling Method (CSM)

S. Aoyama, T. Myo, K. Kato, and K. Ikeda,

Complex-scaling operator: \(U^\theta \)

\[
U^\theta f(r) = e^{i3/2\theta} f(re^{i\theta})
\]

Coordinate: \(r \rightarrow re^{i\theta} \)

Momentum: \(k \rightarrow ke^{-i\theta} \)

Asymptotic form

\[
e^{ikr} \rightarrow e^{ikr} \cos \theta e^{-kr \sin \theta}
\]

Useful for searching many-body resonances

Green’s function with Complex-Scaling Method (CDCS Green’s function)

\[
\mathcal{G}^{(-)}(E, \xi, \xi') = \frac{1}{E - H - i\epsilon} \approx \sum_{\nu} U^{-\theta} \frac{\langle \Phi^\theta_{\nu} \rangle \langle \tilde{\Phi}^\theta_{\nu} \rangle}{E - E^\theta_{\nu}} U^\theta
\]
New Smoothing Procedure with \textit{CSM}

\[\frac{d\sigma}{dE} = \int T^\dagger(E') T(E') \delta(E - E') dE' = \frac{1}{\pi} \text{Im} \mathcal{R}(E) \]

\[T(E) = \langle \Psi^(-)(E, \xi) \chi_C^(-)(R) | V | \Psi^+(\xi, R) \rangle \]

\textbf{Response function}

\[\mathcal{R}(E) = \int d\xi d\xi' \langle \Psi^+(\xi, R) | V^* | \chi_C^(-)(R) \rangle_{R} \mathcal{G}^(-)(E, \xi, \xi') \langle \chi_C^(-)(R) | V | \Psi^+(\xi, R) \rangle_{R} \]

\textbf{Green’s function with Complex-Scaling Method (CDCS Green’s function)}

\[\mathcal{G}^(-)(E, \xi, \xi') = U^{-\theta} \frac{1}{E - H^\theta - i\epsilon} U^\theta \approx \sum_\nu U^{-\theta} \frac{\langle \Phi_{\nu}^\theta | \tilde{\Phi}_{\nu}^\theta \rangle}{E - E_{\nu}^\theta} U^\theta \]

\[\mathcal{G}^(-)(E, \xi, \xi') \approx \sum_\nu \sum_{i,j} \langle \Phi_i | U^{-\theta} | \Phi_{\nu}^\theta \rangle \langle \tilde{\Phi}_{\nu}^\theta | U^\theta | \Phi_j \rangle \frac{\langle \Phi_{\nu}^\theta | \tilde{\Phi}_{\nu}^\theta \rangle}{E - E_{\nu}^\theta} \langle \Phi_j | \}

\[\mathcal{R}(E) = \sum_\nu \sum_{i,j} \langle \Psi^+(\xi, R) | V^* | \chi_C^(-)(R) \Phi_i \rangle \frac{\langle \Phi_i | U^{-\theta} | \Phi_{\nu}^\theta \rangle \langle \tilde{\Phi}_{\nu}^\theta | U^\theta | \Phi_j \rangle}{E - E_{\nu}^\theta} \langle \Phi_j \chi_C^(-)| V | \Psi^+(\xi, R) \rangle \]

\textbf{T-matrix calculated by CDCC}

Courtesy of Matsumoto
The complex-scaling method classifies the continuum states of 22C.

Why so large BGP effect?

s-wave neutrons have no barriers

Nonresonant 0^+

Monopole transition

80% 13%

0^+ ground state

2 d-wave neutrons form 0^+ resonance

Coexistence in low-energy continuum state

\checkmark In a core $+n$ system, this will hardly be realized.

\checkmark This resonant-nonresonant 0^+ coexistence is expected for (s-wave) two-neutron halo nuclei generally.

In a core $+n$ system, this will hardly be realized.

This resonant-nonresonant 0^+ coexistence is expected for (s-wave) two-neutron halo nuclei generally.
平滑化関数（PS法）

固有値に対応するkにピークを持つが、かなりの拡がりを持つ。
平滑化の実例(Av法 vs PS法)

平滑化した遷移強度は両者で極めて良く一致。