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The complex picture of neutron-proton pair correlations in N=Z nuclei
- an experimentalist’s perspective

: Bo Cederwall
Royal Institute of Technology (KTH),
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Challenges in Nuclear Structure (selection!)

Limits of nuclear existence
* Driplines
Shell structure in nuclei « Superheavy islan@
» Structure of doubly magic nuclei \

- Changes in the (effective) interactions|Shape coexistence| 7 =

« Development of collective excitations A
n I
Proton drip line and N=Z nuclei 1y rl-l |

Transfermium nuclei

« Spectroscopy beyond the drip line
* Proton-neutron pairing
* |sospin symmetry

Nuclear'shapes
» Exotic shapes and isomers
* Hyperdeformation

» Coexistence and transitions

Neutron rich heavy nuclei (N/Z — 2)
* Large neutron skins (r,-r,— 1fm)

* New coherent excitation modes

» Shell quenching

48Ni

——— Nuclei at the neutron drip line (Z—25)
q . @ ° Verylarge proton-neutron asymmetries
®

 Resonant excitation modes
* Neutron Decay

Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014



Nuclear structure around °°Sn - near the “top"” of the N=Z line

Moller Chart of Nuclides 2000

Quadrupole Deformation

N=Z line coincides with a doubly-

magic system and the proton dripline

- Neutron-proton correlations in identical
.. orbitals

o - Emergence of “collectivity”; B(E2),
) B(E3) strength

- LSSM calculations (eff. charges,
interactions) can be applied and tested

§ o ¢ Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014



Astrophysical interest:
End point of the rp-process path in X-ray bursts and
steady-state hydrogen burning on accreting neutron stars*

1. Schatz et al., Phys Rev. Lgtt. 86, 3471 (2001)
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Ao, Proton separation energy (MeV) Courtesy M. Palacz




Structure data is lacking - challenge for detectors and facilities

106Te
5)

105Sb
103 Sp 104SD

1OOII1 1011n

20
Courtesy M. Palacz

Number of excited states known




What is the g.s. structure of the heaviest N=Z nuclei?
Spin-aligned isoscalar coupling scheme

For 92Pd, valence neutrons and protons ®

mainly occupy the g 4/, subshell >
29242 ] %2 82

— thyg/g

%3
50

i

28

~

The conventional isovector pairing picture:
Yos=(vg o} o) X (AT 92} 0)"

e

~

This would lead to a seniority type spectrum of

low-lying excited states

10 L/‘J




What is the nature of nuclear pair correlations near N=Z?
- A long-standing, open question in nuclear structure physics

When approaching N=Z, “normal” pair correlations may remain or even
be extended as neutrons and protons occupy identical quantum states:

T=1, J=0 (“isovector”) nn, pp
as well as np Cooper pairs (neutrons and protons occupy identical orbits)
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The isoscalar (np) pair gap is predicted to increase sharply as N->Z

"Isospin-generalized"” BCS-type calculation by W. Satula, R. Wyss
Phys. Rev. Lett. Vol. 86, 4488 (2001)

%%KTH?; Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014
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Does isoscalar (np) pairing in the BCS sense exist in Nature?
(i.e. can we find an isoscalar pairing “deuteron” condensate somewhere?)

The experimental search for T=0 np pairing has focused on special features:
- g.s. binding energies of N=Z (even-even vs odd-odd) nuclei
- high-spin properties of N=Z nuclei (reduced CAP, delayed alignments?)
- deuteron transfer reactions: (e.g. measure branching tfo T=1 and T=0

states in odd-odd N=Z nuclei)
Need for (reaction) theory to develop sharp predictions.

£ np (I=0)
T=0, I=0 ‘ I=1, I=0

even-even g.s. —_— odd-odd g.s.

H
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Evidence for isovector np pairing is claimed from nuclear

binding energies, rotational alignments, charge radii etc
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Figure 25: Summary of binding energy differences for nuclei along the N = Z line.

Frauendorf and Macchiavelli

arXiv:1405.1652v1 [nucl-th] 7 May 2014

“Excludes” T=0 pairing in g.s
Note: Data end at N=2=30
Symmetry energy?

Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014




Precison mass data is crucially lacking for N=Z!

Precision of known masses in the '°°Sn region.
45 50 55

Jan, T. Faestermann, M. Goérska, and H. Grawe, Prog. Part. Nucl.Phys. 69, 85 (2013)
FKTIY
Ly Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014



But strong T=0 neutron-proton (np) pair correlations may
also lead to something different:

“Isoscalar spin-aligned np coupling scheme" ~
predicted for N=Z nuclei close below 15n,

«  New “paired phase” different from standard (BCS) T=0 np pairing concept

«  Unique signature of “vibrational-like" yrast energies and “rotational-like"
B(E2) strengths. B(E2:0*> 2*)s develop differently compared with standard
seniority scheme along isotopic chain as N> Z

. A new manifestation of strong np-pair correlations
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Effective (residual) interactions between nucleons in a j-shell

J. P. Schiffer and W. W. True
Rev. Mod. Phys., Vol. 48, No. 2, Part |, April 1976

¢ effective force between particles ~ orbital overlap
* Pauli principle

Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014
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Observation of excited states in the N=Z=46 ‘nucleus °“Pd {@
EXOGAM + NeutronfWall + Diamant experiment SN
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Pd level systematics near N=2
- effects of np interactions

Calculations performed in several model spaces,

i.e, 0g9/2, 0g9/2-1p1/2 and 0g9/2-1p1/2-0f5/2-1p3/2

which all give very similar results .

Int. parameters determined to reproduce exp energies in **%Pd, %>%'Rh
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B. Cederwall et al., Nature 469, 68 (2011)
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Strong residual np interactions = Spin-aligned T=0 np coupling
scheme for N=Z nuclei below 1%95n

’Spin-aligned 7=0 np paired phase”
Not pairing as a BCS condensate

The diagonal SM interaction matrix element
that corresponds to the isoscalar vr(gg,,)?

J=9
J=9

"nuclear belly dancer”




Critical test of LSSM interactions:
Precision spectroscopy of El transitions in semimagic nuclei

« All low-lying states in this region are well described within the £; 5,
ps ., pi»and g, » model space.

» £l transitions are "forbidden” within this space since the matrix
elements <f | E1| > vanish for all possible combinations of initial states i
and final states f.

« Presence of El transitions > other (higher or deeper lying) single-
particle states are active.

* A sensitive probe: Even a minute admixture of such configurations in
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El hindrance factors in N=50 nucleus ?4Ru

TABLE II. The hindrance factors® H for the observed E1 y-ray
transitions as deduced from the branching ratios and lifetimes
[30] of the initial states. Uncertainties are given in parentheses.

AE, = £0.5 keV.

E, (keV) Jr = U7

257 137 — 12
462 15; — 145

402 18] — 18+
1344 15; — 147}
227 127 — 11~
887 187 — 17+
438 5- — 4+
498 11~ — 10*

aH — A2/3

H x 10° (Wau.)™!

0.006 (1)
0.051 (5)
0.188 (25)
0.451(32)
0.57 (27)
1.09(12)
1.90(17)
4.27(19)

15.5x<B(E1)" Moradi, Qi, Cederwall et al., PRC, 014301 (2014)
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5457,

E1 hindrance in 2°Rh

Jr— JT H x 10° (Wau.)™!

I

29/2+ — 27/2- 0.11(1)
37/2- — 35/2+ 0.29(1)
35/2 — 35/2+ 0.35(1)
17/2 — 17/2} 2.8(2)

A2/3

= 155xB(ED) Table I of this work, there are a number of weak E'| transitions

present, even at low excitation energies (below 5 MeV). We
evaluated all possible E'1 transitions among states within the
expanded shell model space. Considering first the E'1 decay
from the first 17/27 state to the yrast 17/2;r state, these states
are predominantly of m (1 pI_/IZOg;/‘;) and 7t(0g9_/52) character,
respectively, as discussed above; i.e., without possibility of
E1 decay. This transition has the largest hindrance, 2.8 x
10> W.u.”! among the E1 decays observed in ®>Rh which
is reflected by the long (~19 ns) half-life of the 17/2~
state [2]. The core-excitation components in these two states
are mainly of a one-neutron character. In our calculation the
contribution to the transition in terms of occupation probability
from the high lying shells 1ds,; and Og7/2 is 0.02, while the
corresponding contribution from the deep-lying shells 1p3/,
and 0 f5, is approximately 10~*. Therefore the E1 hindrance
factor is of the order 5 x 10° W.u.~!, which is consistent with
the value given in Table II. The absence of E1 transitions
depopulating the following negative-parity states up to 25/2~
indicates that the influence of the core excited configurations
is limited in these states as predicted in Ref. [8]. E1 decays
observed from the higher-lying negative-parity states as well as
from the 29/27 state signal significant contributions from core-
excited configurations with one neutron being excited from
below the N = 50 shell closure to the 1ds/; or Og7/, orbits,
in agreement with the calculations presented in Ref. [20].




Exposing the mv((gy,,)? )o* interaction
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“seniority-like” 6 “vibrational-like
Shell model spectrum of *?Pd calculated in the 1p,,0g,, space as a function of a controlling
parameter , i.e., (we take as interaction matrix element the value V9(6) = V9(1 + 0)
C.Q1, J.Blomgvist, T.Back, B. Cederwall, A. Johnson, R. J. Liotta,
and R. Wyss, PRC 84, 021301(R) (2011)

Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014



Average number of (0g2,,)J pairs,C!}, as a function of spin I for the wave
functions of the yrast states of °?Pd.

C.Q1, J.Blomgvist, T.Back, B. Cederwall, A. Johnson, R. J. Liotta,

and R. Wyss, PRC 84, 021301(R) (2011)

Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014



Generation of angular momentum in the isoscalar
spin-aligned coupling scheme (°2Pd)

Similarities with "stretch scheme”
M. Danos and V. Gillet, Phys. Rev. 161 (1967) 1034
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2)s @ (0g9/2)3

C. Qi, priv. comm., Z.X. Xu et al., Nuclear Physics A 877 (2012) 51-58

Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014



LSSM calculation, fpg (f5/2, p3/2,p1/2, g9/2)
(all shells between 28 and 50) C. Qi

350
300
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.§ 250
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= Only T=0
N 150 i
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=0




LSSM calculation, fpg (f5/2, p3/2,p1/2, g9/2)
(all shells between 28 and 50) C. Qi

180
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"Unique" signature of spin-aligned T=0 coupling scheme

oo Calc. .(pg) '
== Calc. (fpg)

- - Rotor
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Upper: Shell model spectra of *2Pd

calculated within the 1p;,0£5,,1p,,0g,,, space [10] (fpg) and the 1p,,0g,, space (pg).

Lower: B(E2; I — I — 2) values in *°Pd calculated within the fpg and pg spaces. The two
dashed lines show the predictions of the geometric collective model normalized to the 2%, state
C.Qi, J.Blomgqvist, T.Back, B. Cederwall, A. Johnson, R. J. Liotta,

and R. Wyss, PRC 84, 021301(R) (2011)

Bo Cederwall, PKU-CUSTIPEN Nucl. React. Workshop, Peking Univ., 12 August 2014



Experimental opportunities at the end of

AGATA @ GANIL (until now, EXOGAM) ..

- RDT/RDDS using VAMOS in gas-filled mode
- L.E. Coulex

- Spectroscopy

- np-transfer

RIKEN (DALI2+ZDS)?
AGATA-HISPEC @ FAIR
- H.E. Coulex, knockout

Theory: Need sharper predictions for reactions & structure
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